Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 11 internal transactions
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 38568625 | 5 hrs ago | Contract Creation | 0 ETH | |||
| 38549604 | 10 hrs ago | Contract Creation | 0 ETH | |||
| 38546756 | 11 hrs ago | Contract Creation | 0 ETH | |||
| 38492729 | 26 hrs ago | Contract Creation | 0 ETH | |||
| 38488298 | 27 hrs ago | Contract Creation | 0 ETH | |||
| 38486869 | 27 hrs ago | Contract Creation | 0 ETH | |||
| 38481355 | 29 hrs ago | Contract Creation | 0 ETH | |||
| 38407617 | 2 days ago | Contract Creation | 0 ETH | |||
| 38406176 | 2 days ago | Contract Creation | 0 ETH | |||
| 38378027 | 2 days ago | Contract Creation | 0 ETH | |||
| 38317313 | 3 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
UERC20Factory
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 800 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import {UERC20} from "../tokens/UERC20.sol";
import {IUERC20Factory} from "../interfaces/IUERC20Factory.sol";
import {ITokenFactory} from "../interfaces/ITokenFactory.sol";
import {UERC20Metadata} from "../libraries/UERC20MetadataLibrary.sol";
import {Create2} from "@openzeppelin-latest/contracts/utils/Create2.sol";
/// @title UERC20Factory
/// @notice Deploys new UERC20 contracts
contract UERC20Factory is IUERC20Factory {
/// @dev Parameters stored transiently for token initialization
Parameters private parameters;
/// @inheritdoc IUERC20Factory
function getUERC20Address(
string memory name,
string memory symbol,
uint8 decimals,
address creator,
bytes32 graffiti
) external view returns (address) {
bytes32 salt = keccak256(abi.encode(name, symbol, decimals, creator, graffiti));
bytes32 initCodeHash = keccak256(abi.encodePacked(type(UERC20).creationCode));
return Create2.computeAddress(salt, initCodeHash, address(this));
}
/// @inheritdoc IUERC20Factory
function getParameters() external view returns (Parameters memory) {
return parameters;
}
/// @inheritdoc ITokenFactory
function createToken(
string memory name,
string memory symbol,
uint8 decimals,
uint256 totalSupply,
address recipient,
bytes calldata data,
bytes32 graffiti
) external returns (address tokenAddress) {
(UERC20Metadata memory metadata) = abi.decode(data, (UERC20Metadata));
if (recipient == address(0)) {
revert RecipientCannotBeZeroAddress();
}
if (totalSupply == 0) {
revert TotalSupplyCannotBeZero();
}
// Store parameters transiently for token to access during construction
parameters = Parameters({
name: name,
symbol: symbol,
totalSupply: totalSupply,
recipient: recipient,
decimals: decimals,
creator: msg.sender,
metadata: metadata,
graffiti: graffiti
});
// Compute salt based on the core parameters that define a token's identity
bytes32 salt = keccak256(abi.encode(name, symbol, decimals, msg.sender, graffiti));
// Deploy the token with the computed salt
tokenAddress = address(new UERC20{salt: salt}());
// Clear parameters after deployment
delete parameters;
emit TokenCreated(tokenAddress);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import {IUERC20Factory} from "../interfaces/IUERC20Factory.sol";
import {BaseUERC20} from "./BaseUERC20.sol";
/// @title UERC20
/// @notice ERC20 token contract
contract UERC20 is BaseUERC20 {
constructor() {
IUERC20Factory.Parameters memory params = IUERC20Factory(msg.sender).getParameters();
_name = params.name;
_nameHash = keccak256(bytes(_name));
_symbol = params.symbol;
_decimals = params.decimals;
creator = params.creator;
graffiti = params.graffiti;
metadata = params.metadata;
_mint(params.recipient, params.totalSupply);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {UERC20Metadata} from "../libraries/UERC20MetadataLibrary.sol";
import {ITokenFactory} from "./ITokenFactory.sol";
/// @title IUERC20Factory
/// @notice Interface for the IUERC20Factory contract
interface IUERC20Factory is ITokenFactory {
/// @notice Parameters struct to be used by the UERC20 during construction
struct Parameters {
uint256 totalSupply;
bytes32 graffiti;
address recipient;
address creator;
uint8 decimals;
string name;
string symbol;
UERC20Metadata metadata;
}
/// @notice Computes the deterministic address for a token based on its core parameters
/// @param name The name of the token
/// @param symbol The symbol of the token
/// @param decimals The number of decimals the token uses
/// @param creator The creator of the token
/// @param graffiti Additional data needed to compute the salt
/// @return The deterministic address of the token
function getUERC20Address(
string memory name,
string memory symbol,
uint8 decimals,
address creator,
bytes32 graffiti
) external view returns (address);
/// @notice Gets the parameters for token initialization
/// @return The parameters structure with all token initialization data
function getParameters() external view returns (Parameters memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ITokenFactory
/// @notice Generic interface for a token factory.
interface ITokenFactory {
/// @notice Emitted when a new token is created
event TokenCreated(address tokenAddress);
/// @notice Thrown when the recipient is the zero address
error RecipientCannotBeZeroAddress();
/// @notice Thrown when the initial supply is zero
error TotalSupplyCannotBeZero();
/// @notice Creates a new token contract
/// @param name The ERC20-style name of the token.
/// @param symbol The ERC20-style symbol of the token.
/// @param decimals The number of decimal places for the token.
/// @param initialSupply The initial supply to mint upon creation.
/// @param recipient The recipient of the initial supply.
/// @param data Additional factory-specific data required for token creation.
/// @param graffiti Additional data to be included in the token's salt
/// @return tokenAddress The address of the newly created token.
function createToken(
string calldata name,
string calldata symbol,
uint8 decimals,
uint256 initialSupply,
address recipient,
bytes calldata data,
bytes32 graffiti
) external returns (address tokenAddress);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Base64} from "@openzeppelin-latest/contracts/utils/Base64.sol";
import {Strings} from "@openzeppelin-latest/contracts/utils/Strings.sol";
struct UERC20Metadata {
string description;
string website;
string image;
}
/// @title UERC20MetadataLibrary
/// @notice Library for generating base64 encoded JSON token metadata
/// @dev If no fields are provided, returns an empty JSON object.
library UERC20MetadataLibrary {
using Strings for *;
/// @notice Generates a base64 encoded JSON string of the token metadata
/// @param metadata The token metadata
/// @return The base64 encoded JSON string
function toJSON(UERC20Metadata memory metadata) internal pure returns (string memory) {
return string(abi.encodePacked("data:application/json;base64,", Base64.encode(displayMetadata(metadata))));
}
/// @notice Generates an abi encoded JSON string of the token metadata
/// @param metadata The token metadata
/// @return The abi encoded JSON string
function displayMetadata(UERC20Metadata memory metadata) private pure returns (bytes memory) {
bytes memory json = abi.encodePacked("{");
bool hasField;
if (bytes(metadata.description).length > 0) {
json = abi.encodePacked(json, '"description":"', metadata.description.escapeJSON(), '"');
hasField = true;
}
if (bytes(metadata.website).length > 0) {
if (hasField) json = abi.encodePacked(json, ", ");
json = abi.encodePacked(json, '"website":"', metadata.website.escapeJSON(), '"');
hasField = true;
}
if (bytes(metadata.image).length > 0) {
if (hasField) json = abi.encodePacked(json, ", ");
json = abi.encodePacked(json, '"image":"', metadata.image.escapeJSON(), '"');
}
return abi.encodePacked(json, "}");
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ERC20} from "@solady/src/tokens/ERC20.sol";
import {IERC20} from "@openzeppelin-latest/contracts/token/ERC20/IERC20.sol";
import {IERC165} from "@openzeppelin-latest/contracts/interfaces/IERC165.sol";
import {IERC20Permit} from "@openzeppelin-latest/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {UERC20Metadata, UERC20MetadataLibrary} from "../libraries/UERC20MetadataLibrary.sol";
/// @title BaseUERC20
/// @notice ERC20 token contract
/// @dev Uses solady for default permit2 approval
/// @dev Implementing contract should initialise global variables and mint any initial supply
abstract contract BaseUERC20 is ERC20, IERC165 {
using UERC20MetadataLibrary for UERC20Metadata;
/// @dev Cached hash of the token name for gas-efficient EIP-712 operations.
/// This immutable value is computed once during construction and used by the
/// underlying ERC20 implementation for permit functionality.
bytes32 internal immutable _nameHash;
// Core parameters that define token identity
bytes32 public immutable graffiti;
address public immutable creator;
uint8 internal immutable _decimals;
string internal _name;
string internal _symbol;
// Metadata that may have extended information
UERC20Metadata public metadata;
/// @notice Returns the URI of the token metadata.
function tokenURI() external view returns (string memory) {
return metadata.toJSON();
}
/// @notice Returns the name of the token.
function name() public view override returns (string memory) {
return _name;
}
/// @notice Returns the symbol of the token.
function symbol() public view override returns (string memory) {
return _symbol;
}
/// @notice Returns the decimals places of the token.
function decimals() public view override returns (uint8) {
return _decimals;
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 _interfaceId) public view virtual returns (bool) {
return _interfaceId == type(IERC165).interfaceId || _interfaceId == type(IERC20).interfaceId
|| _interfaceId == type(IERC20Permit).interfaceId;
}
/// @inheritdoc ERC20
function _constantNameHash() internal view override returns (bytes32) {
return _nameHash;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
* See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE, true);
}
/**
* @dev Converts a `bytes` to its Bytes64Url `string` representation.
* Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
*/
function encodeURL(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE_URL, false);
}
/**
* @dev Internal table-agnostic conversion
*/
function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
// multiplied by 4 so that it leaves room for padding the last chunk
// - `data.length + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// - `4 *` -> 4 characters for each chunk
// This is equivalent to: 4 * Math.ceil(data.length / 3)
//
// If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
// opposed to when padding is required to fill the last chunk.
// - `4 * data.length` -> 4 characters for each chunk
// - ` + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// This is equivalent to: Math.ceil((4 * data.length) / 3)
uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
string memory result = new string(resultLength);
assembly ("memory-safe") {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 0x20)
let dataPtr := data
let endPtr := add(data, mload(data))
// In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
// set it to zero to make sure no dirty bytes are read in that section.
let afterPtr := add(endPtr, 0x20)
let afterCache := mload(afterPtr)
mstore(afterPtr, 0x00)
// Run over the input, 3 bytes at a time
for {
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 byte (24 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F to bitmask the least significant 6 bits.
// Use this as an index into the lookup table, mload an entire word
// so the desired character is in the least significant byte, and
// mstore8 this least significant byte into the result and continue.
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// Reset the value that was cached
mstore(afterPtr, afterCache)
if withPadding {
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
}
return result;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
/// minting and transferring zero tokens, as well as self-approvals.
/// For performance, this implementation WILL NOT revert for such actions.
/// Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
/// the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
/// change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The total supply has overflowed.
error TotalSupplyOverflow();
/// @dev The allowance has overflowed.
error AllowanceOverflow();
/// @dev The allowance has underflowed.
error AllowanceUnderflow();
/// @dev Insufficient balance.
error InsufficientBalance();
/// @dev Insufficient allowance.
error InsufficientAllowance();
/// @dev The permit is invalid.
error InvalidPermit();
/// @dev The permit has expired.
error PermitExpired();
/// @dev The allowance of Permit2 is fixed at infinity.
error Permit2AllowanceIsFixedAtInfinity();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 amount);
/// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
event Approval(address indexed owner, address indexed spender, uint256 amount);
/// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
uint256 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
/// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
uint256 private constant _APPROVAL_EVENT_SIGNATURE =
0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The storage slot for the total supply.
uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;
/// @dev The balance slot of `owner` is given by:
/// ```
/// mstore(0x0c, _BALANCE_SLOT_SEED)
/// mstore(0x00, owner)
/// let balanceSlot := keccak256(0x0c, 0x20)
/// ```
uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;
/// @dev The allowance slot of (`owner`, `spender`) is given by:
/// ```
/// mstore(0x20, spender)
/// mstore(0x0c, _ALLOWANCE_SLOT_SEED)
/// mstore(0x00, owner)
/// let allowanceSlot := keccak256(0x0c, 0x34)
/// ```
uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;
/// @dev The nonce slot of `owner` is given by:
/// ```
/// mstore(0x0c, _NONCES_SLOT_SEED)
/// mstore(0x00, owner)
/// let nonceSlot := keccak256(0x0c, 0x20)
/// ```
uint256 private constant _NONCES_SLOT_SEED = 0x38377508;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;
/// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
bytes32 private constant _DOMAIN_TYPEHASH =
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;
/// @dev `keccak256("1")`.
/// If you need to use a different version, override `_versionHash`.
bytes32 private constant _DEFAULT_VERSION_HASH =
0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;
/// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
bytes32 private constant _PERMIT_TYPEHASH =
0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
/// @dev The canonical Permit2 address.
/// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
/// Enabled by default. To disable, override `_givePermit2InfiniteAllowance()`.
/// [Github](https://github.com/Uniswap/permit2)
/// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 METADATA */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the name of the token.
function name() public view virtual returns (string memory);
/// @dev Returns the symbol of the token.
function symbol() public view virtual returns (string memory);
/// @dev Returns the decimals places of the token.
function decimals() public view virtual returns (uint8) {
return 18;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the amount of tokens in existence.
function totalSupply() public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(_TOTAL_SUPPLY_SLOT)
}
}
/// @dev Returns the amount of tokens owned by `owner`.
function balanceOf(address owner) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x0c, _BALANCE_SLOT_SEED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x20))
}
}
/// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
function allowance(address owner, address spender)
public
view
virtual
returns (uint256 result)
{
if (_givePermit2InfiniteAllowance()) {
if (spender == _PERMIT2) return type(uint256).max;
}
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, spender)
mstore(0x0c, _ALLOWANCE_SLOT_SEED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x34))
}
}
/// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
///
/// Emits a {Approval} event.
function approve(address spender, uint256 amount) public virtual returns (bool) {
if (_givePermit2InfiniteAllowance()) {
/// @solidity memory-safe-assembly
assembly {
// If `spender == _PERMIT2 && amount != type(uint256).max`.
if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
revert(0x1c, 0x04)
}
}
}
/// @solidity memory-safe-assembly
assembly {
// Compute the allowance slot and store the amount.
mstore(0x20, spender)
mstore(0x0c, _ALLOWANCE_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x34), amount)
// Emit the {Approval} event.
mstore(0x00, amount)
log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
}
return true;
}
/// @dev Transfer `amount` tokens from the caller to `to`.
///
/// Requirements:
/// - `from` must at least have `amount`.
///
/// Emits a {Transfer} event.
function transfer(address to, uint256 amount) public virtual returns (bool) {
_beforeTokenTransfer(msg.sender, to, amount);
/// @solidity memory-safe-assembly
assembly {
// Compute the balance slot and load its value.
mstore(0x0c, _BALANCE_SLOT_SEED)
mstore(0x00, caller())
let fromBalanceSlot := keccak256(0x0c, 0x20)
let fromBalance := sload(fromBalanceSlot)
// Revert if insufficient balance.
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated balance.
sstore(fromBalanceSlot, sub(fromBalance, amount))
// Compute the balance slot of `to`.
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x20)
// Add and store the updated balance of `to`.
// Will not overflow because the sum of all user balances
// cannot exceed the maximum uint256 value.
sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
// Emit the {Transfer} event.
mstore(0x20, amount)
log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
}
_afterTokenTransfer(msg.sender, to, amount);
return true;
}
/// @dev Transfers `amount` tokens from `from` to `to`.
///
/// Note: Does not update the allowance if it is the maximum uint256 value.
///
/// Requirements:
/// - `from` must at least have `amount`.
/// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
_beforeTokenTransfer(from, to, amount);
// Code duplication is for zero-cost abstraction if possible.
if (_givePermit2InfiniteAllowance()) {
/// @solidity memory-safe-assembly
assembly {
let from_ := shl(96, from)
if iszero(eq(caller(), _PERMIT2)) {
// Compute the allowance slot and load its value.
mstore(0x20, caller())
mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
let allowanceSlot := keccak256(0x0c, 0x34)
let allowance_ := sload(allowanceSlot)
// If the allowance is not the maximum uint256 value.
if not(allowance_) {
// Revert if the amount to be transferred exceeds the allowance.
if gt(amount, allowance_) {
mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated allowance.
sstore(allowanceSlot, sub(allowance_, amount))
}
}
// Compute the balance slot and load its value.
mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
let fromBalanceSlot := keccak256(0x0c, 0x20)
let fromBalance := sload(fromBalanceSlot)
// Revert if insufficient balance.
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated balance.
sstore(fromBalanceSlot, sub(fromBalance, amount))
// Compute the balance slot of `to`.
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x20)
// Add and store the updated balance of `to`.
// Will not overflow because the sum of all user balances
// cannot exceed the maximum uint256 value.
sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
// Emit the {Transfer} event.
mstore(0x20, amount)
log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
}
} else {
/// @solidity memory-safe-assembly
assembly {
let from_ := shl(96, from)
// Compute the allowance slot and load its value.
mstore(0x20, caller())
mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
let allowanceSlot := keccak256(0x0c, 0x34)
let allowance_ := sload(allowanceSlot)
// If the allowance is not the maximum uint256 value.
if not(allowance_) {
// Revert if the amount to be transferred exceeds the allowance.
if gt(amount, allowance_) {
mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated allowance.
sstore(allowanceSlot, sub(allowance_, amount))
}
// Compute the balance slot and load its value.
mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
let fromBalanceSlot := keccak256(0x0c, 0x20)
let fromBalance := sload(fromBalanceSlot)
// Revert if insufficient balance.
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated balance.
sstore(fromBalanceSlot, sub(fromBalance, amount))
// Compute the balance slot of `to`.
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x20)
// Add and store the updated balance of `to`.
// Will not overflow because the sum of all user balances
// cannot exceed the maximum uint256 value.
sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
// Emit the {Transfer} event.
mstore(0x20, amount)
log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
}
}
_afterTokenTransfer(from, to, amount);
return true;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EIP-2612 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev For more performance, override to return the constant value
/// of `keccak256(bytes(name()))` if `name()` will never change.
function _constantNameHash() internal view virtual returns (bytes32 result) {}
/// @dev If you need a different value, override this function.
function _versionHash() internal view virtual returns (bytes32 result) {
result = _DEFAULT_VERSION_HASH;
}
/// @dev For inheriting contracts to increment the nonce.
function _incrementNonce(address owner) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x0c, _NONCES_SLOT_SEED)
mstore(0x00, owner)
let nonceSlot := keccak256(0x0c, 0x20)
sstore(nonceSlot, add(1, sload(nonceSlot)))
}
}
/// @dev Returns the current nonce for `owner`.
/// This value is used to compute the signature for EIP-2612 permit.
function nonces(address owner) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// Compute the nonce slot and load its value.
mstore(0x0c, _NONCES_SLOT_SEED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x20))
}
}
/// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
/// authorized by a signed approval by `owner`.
///
/// Emits a {Approval} event.
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (_givePermit2InfiniteAllowance()) {
/// @solidity memory-safe-assembly
assembly {
// If `spender == _PERMIT2 && value != type(uint256).max`.
if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
revert(0x1c, 0x04)
}
}
}
bytes32 nameHash = _constantNameHash();
// We simply calculate it on-the-fly to allow for cases where the `name` may change.
if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
bytes32 versionHash = _versionHash();
/// @solidity memory-safe-assembly
assembly {
// Revert if the block timestamp is greater than `deadline`.
if gt(timestamp(), deadline) {
mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
revert(0x1c, 0x04)
}
let m := mload(0x40) // Grab the free memory pointer.
// Clean the upper 96 bits.
owner := shr(96, shl(96, owner))
spender := shr(96, shl(96, spender))
// Compute the nonce slot and load its value.
mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
mstore(0x00, owner)
let nonceSlot := keccak256(0x0c, 0x20)
let nonceValue := sload(nonceSlot)
// Prepare the domain separator.
mstore(m, _DOMAIN_TYPEHASH)
mstore(add(m, 0x20), nameHash)
mstore(add(m, 0x40), versionHash)
mstore(add(m, 0x60), chainid())
mstore(add(m, 0x80), address())
mstore(0x2e, keccak256(m, 0xa0))
// Prepare the struct hash.
mstore(m, _PERMIT_TYPEHASH)
mstore(add(m, 0x20), owner)
mstore(add(m, 0x40), spender)
mstore(add(m, 0x60), value)
mstore(add(m, 0x80), nonceValue)
mstore(add(m, 0xa0), deadline)
mstore(0x4e, keccak256(m, 0xc0))
// Prepare the ecrecover calldata.
mstore(0x00, keccak256(0x2c, 0x42))
mstore(0x20, and(0xff, v))
mstore(0x40, r)
mstore(0x60, s)
let t := staticcall(gas(), 1, 0x00, 0x80, 0x20, 0x20)
// If the ecrecover fails, the returndatasize will be 0x00,
// `owner` will be checked if it equals the hash at 0x00,
// which evaluates to false (i.e. 0), and we will revert.
// If the ecrecover succeeds, the returndatasize will be 0x20,
// `owner` will be compared against the returned address at 0x20.
if iszero(eq(mload(returndatasize()), owner)) {
mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
revert(0x1c, 0x04)
}
// Increment and store the updated nonce.
sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
// Compute the allowance slot and store the value.
// The `owner` is already at slot 0x20.
mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
sstore(keccak256(0x2c, 0x34), value)
// Emit the {Approval} event.
log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
mstore(0x40, m) // Restore the free memory pointer.
mstore(0x60, 0) // Restore the zero pointer.
}
}
/// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
bytes32 nameHash = _constantNameHash();
// We simply calculate it on-the-fly to allow for cases where the `name` may change.
if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
bytes32 versionHash = _versionHash();
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Grab the free memory pointer.
mstore(m, _DOMAIN_TYPEHASH)
mstore(add(m, 0x20), nameHash)
mstore(add(m, 0x40), versionHash)
mstore(add(m, 0x60), chainid())
mstore(add(m, 0x80), address())
result := keccak256(m, 0xa0)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL MINT FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Mints `amount` tokens to `to`, increasing the total supply.
///
/// Emits a {Transfer} event.
function _mint(address to, uint256 amount) internal virtual {
_beforeTokenTransfer(address(0), to, amount);
/// @solidity memory-safe-assembly
assembly {
let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
let totalSupplyAfter := add(totalSupplyBefore, amount)
// Revert if the total supply overflows.
if lt(totalSupplyAfter, totalSupplyBefore) {
mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
revert(0x1c, 0x04)
}
// Store the updated total supply.
sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
// Compute the balance slot and load its value.
mstore(0x0c, _BALANCE_SLOT_SEED)
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x20)
// Add and store the updated balance.
sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
// Emit the {Transfer} event.
mstore(0x20, amount)
log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
}
_afterTokenTransfer(address(0), to, amount);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL BURN FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Burns `amount` tokens from `from`, reducing the total supply.
///
/// Emits a {Transfer} event.
function _burn(address from, uint256 amount) internal virtual {
_beforeTokenTransfer(from, address(0), amount);
/// @solidity memory-safe-assembly
assembly {
// Compute the balance slot and load its value.
mstore(0x0c, _BALANCE_SLOT_SEED)
mstore(0x00, from)
let fromBalanceSlot := keccak256(0x0c, 0x20)
let fromBalance := sload(fromBalanceSlot)
// Revert if insufficient balance.
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated balance.
sstore(fromBalanceSlot, sub(fromBalance, amount))
// Subtract and store the updated total supply.
sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
// Emit the {Transfer} event.
mstore(0x00, amount)
log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
}
_afterTokenTransfer(from, address(0), amount);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL TRANSFER FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Moves `amount` of tokens from `from` to `to`.
function _transfer(address from, address to, uint256 amount) internal virtual {
_beforeTokenTransfer(from, to, amount);
/// @solidity memory-safe-assembly
assembly {
let from_ := shl(96, from)
// Compute the balance slot and load its value.
mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
let fromBalanceSlot := keccak256(0x0c, 0x20)
let fromBalance := sload(fromBalanceSlot)
// Revert if insufficient balance.
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated balance.
sstore(fromBalanceSlot, sub(fromBalance, amount))
// Compute the balance slot of `to`.
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x20)
// Add and store the updated balance of `to`.
// Will not overflow because the sum of all user balances
// cannot exceed the maximum uint256 value.
sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
// Emit the {Transfer} event.
mstore(0x20, amount)
log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
}
_afterTokenTransfer(from, to, amount);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL ALLOWANCE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
if (_givePermit2InfiniteAllowance()) {
if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
}
/// @solidity memory-safe-assembly
assembly {
// Compute the allowance slot and load its value.
mstore(0x20, spender)
mstore(0x0c, _ALLOWANCE_SLOT_SEED)
mstore(0x00, owner)
let allowanceSlot := keccak256(0x0c, 0x34)
let allowance_ := sload(allowanceSlot)
// If the allowance is not the maximum uint256 value.
if not(allowance_) {
// Revert if the amount to be transferred exceeds the allowance.
if gt(amount, allowance_) {
mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
revert(0x1c, 0x04)
}
// Subtract and store the updated allowance.
sstore(allowanceSlot, sub(allowance_, amount))
}
}
}
/// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
///
/// Emits a {Approval} event.
function _approve(address owner, address spender, uint256 amount) internal virtual {
if (_givePermit2InfiniteAllowance()) {
/// @solidity memory-safe-assembly
assembly {
// If `spender == _PERMIT2 && amount != type(uint256).max`.
if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
revert(0x1c, 0x04)
}
}
}
/// @solidity memory-safe-assembly
assembly {
let owner_ := shl(96, owner)
// Compute the allowance slot and store the amount.
mstore(0x20, spender)
mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
sstore(keccak256(0x0c, 0x34), amount)
// Emit the {Approval} event.
mstore(0x00, amount)
log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HOOKS TO OVERRIDE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Hook that is called before any transfer of tokens.
/// This includes minting and burning.
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/// @dev Hook that is called after any transfer of tokens.
/// This includes minting and burning.
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PERMIT2 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
///
/// This value should be kept constant after contract initialization,
/// or else the actual allowance values may not match with the {Approval} events.
/// For best performance, return a compile-time constant for zero-cost abstraction.
function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
return true;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@ensdomains/=lib/v4-periphery/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/",
"@openzeppelin/contracts/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/contracts/",
"@uniswap/v4-core/=lib/v4-periphery/lib/v4-core/",
"ds-test/=lib/v4-periphery/lib/v4-core/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/v4-periphery/lib/forge-gas-snapshot/src/",
"forge-std/=lib/forge-std/src/",
"hardhat/=lib/v4-periphery/lib/v4-core/node_modules/hardhat/",
"openzeppelin-contracts/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/",
"permit2/=lib/v4-periphery/lib/permit2/",
"solmate/=lib/v4-periphery/lib/v4-core/lib/solmate/",
"v4-core/=lib/v4-periphery/lib/v4-core/src/",
"v4-periphery/=lib/v4-periphery/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/"
],
"optimizer": {
"enabled": true,
"runs": 800
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"RecipientCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"TotalSupplyCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenAddress","type":"address"}],"name":"TokenCreated","type":"event"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"}],"name":"createToken","outputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getParameters","outputs":[{"components":[{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"components":[{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"website","type":"string"},{"internalType":"string","name":"image","type":"string"}],"internalType":"struct UERC20Metadata","name":"metadata","type":"tuple"}],"internalType":"struct IUERC20Factory.Parameters","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"}],"name":"getUERC20Address","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6080604052348015600e575f80fd5b50612aa58061001c5f395ff3fe608060405234801561000f575f80fd5b506004361061003f575f3560e01c8063a255e0ad14610043578063a5ea11da14610073578063f752070e14610088575b5f80fd5b61005661005136600461096d565b61009b565b6040516001600160a01b0390911681526020015b60405180910390f35b61007b610358565b60405161006a9190610ab0565b610056610096366004610b5c565b610696565b5f806100a984860186610be8565b90506001600160a01b0386166100d257604051636c38382960e11b815260040160405180910390fd5b865f036100f257604051637ceabcb560e11b815260040160405180910390fd5b6040805161010081018252888152602081018590526001600160a01b038816918101829052336060820181905260ff8b166080830181905260a083018e905260c083018d905260e083018590525f8b815560018890556002805473ffffffffffffffffffffffffffffffffffffffff19169095179094556003805474ffffffffffffffffffffffffffffffffffffffffff19167fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217600160a01b9091021790559060046101c58d82610d2e565b5060c082015160058201906101da9082610d2e565b5060e08201518051600683019081906101f39082610d2e565b50602082015160018201906102089082610d2e565b506040820151600282019061021d9082610d2e565b5050509050505f8a8a8a338760405160200161023d959493929190610de9565b604051602081830303815290604052805190602001209050806040516102629061075d565b8190604051809103905ff590508015801561027f573d5f803e3d5ffd5b505f80805560018190556002805473ffffffffffffffffffffffffffffffffffffffff191690556003805474ffffffffffffffffffffffffffffffffffffffffff19169055909350806102d360048261076a565b6102e0600583015f61076a565b600682015f6102ef828261076a565b6102fc600183015f61076a565b610309600283015f61076a565b50506040516001600160a01b03861681527f2e2b3f61b70d2d131b2a807371103cc98d51adcaa5e9a8f9c32658ad8426e74e9250602001905060405180910390a1505098975050505050505050565b6103606107a4565b60408051610100810182525f8054825260015460208301526002546001600160a01b03908116938301939093526003549283166060830152600160a01b90920460ff1660808201526004805491929160a0840191906103be90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546103ea90610caa565b80156104355780601f1061040c57610100808354040283529160200191610435565b820191905f5260205f20905b81548152906001019060200180831161041857829003601f168201915b5050505050815260200160058201805461044e90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461047a90610caa565b80156104c55780601f1061049c576101008083540402835291602001916104c5565b820191905f5260205f20905b8154815290600101906020018083116104a857829003601f168201915b50505050508152602001600682016040518060600160405290815f820180546104ed90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461051990610caa565b80156105645780601f1061053b57610100808354040283529160200191610564565b820191905f5260205f20905b81548152906001019060200180831161054757829003601f168201915b5050505050815260200160018201805461057d90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546105a990610caa565b80156105f45780601f106105cb576101008083540402835291602001916105f4565b820191905f5260205f20905b8154815290600101906020018083116105d757829003601f168201915b5050505050815260200160028201805461060d90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461063990610caa565b80156106845780601f1061065b57610100808354040283529160200191610684565b820191905f5260205f20905b81548152906001019060200180831161066757829003601f168201915b50505050508152505081525050905090565b5f8086868686866040516020016106b1959493929190610de9565b6040516020818303038152906040528051906020012090505f604051806020016106da9061075d565b601f1982820381018352601f9091011660408190526106fc9190602001610e37565b60405160208183030381529060405280519060200120905061071f82823061072b565b98975050505050505050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b611c2280610e4e83390190565b50805461077690610caa565b5f825580601f10610785575050565b601f0160209004905f5260205f20908101906107a1919061081d565b50565b6040518061010001604052805f81526020015f80191681526020015f6001600160a01b031681526020015f6001600160a01b031681526020015f60ff168152602001606081526020016060815260200161081860405180606001604052806060815260200160608152602001606081525090565b905290565b5b80821115610831575f815560010161081e565b5090565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561086c5761086c610835565b60405290565b5f82601f830112610881575f80fd5b813567ffffffffffffffff81111561089b5761089b610835565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156108ca576108ca610835565b6040528181528382016020018510156108e1575f80fd5b816020850160208301375f918101602001919091529392505050565b803560ff8116811461090d575f80fd5b919050565b80356001600160a01b038116811461090d575f80fd5b5f8083601f840112610938575f80fd5b50813567ffffffffffffffff81111561094f575f80fd5b602083019150836020828501011115610966575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610984575f80fd5b883567ffffffffffffffff81111561099a575f80fd5b6109a68b828c01610872565b985050602089013567ffffffffffffffff8111156109c2575f80fd5b6109ce8b828c01610872565b9750506109dd60408a016108fd565b9550606089013594506109f260808a01610912565b935060a089013567ffffffffffffffff811115610a0d575f80fd5b610a198b828c01610928565b999c989b50969995989497949560c00135949350505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f815160608452610a746060850182610a32565b905060208301518482036020860152610a8d8282610a32565b91505060408301518482036040860152610aa78282610a32565b95945050505050565b6020815281516020820152602082015160408201525f6040830151610ae060608401826001600160a01b03169052565b5060608301516001600160a01b038116608084015250608083015160ff811660a08401525060a083015161010060c0840152610b20610120840182610a32565b905060c0840151601f198483030160e0850152610b3d8282610a32565b91505060e0840151601f1984830301610100850152610aa78282610a60565b5f805f805f60a08688031215610b70575f80fd5b853567ffffffffffffffff811115610b86575f80fd5b610b9288828901610872565b955050602086013567ffffffffffffffff811115610bae575f80fd5b610bba88828901610872565b945050610bc9604087016108fd565b9250610bd760608701610912565b949793965091946080013592915050565b5f60208284031215610bf8575f80fd5b813567ffffffffffffffff811115610c0e575f80fd5b820160608185031215610c1f575f80fd5b610c27610849565b813567ffffffffffffffff811115610c3d575f80fd5b610c4986828501610872565b825250602082013567ffffffffffffffff811115610c65575f80fd5b610c7186828501610872565b602083015250604082013567ffffffffffffffff811115610c90575f80fd5b610c9c86828501610872565b604083015250949350505050565b600181811c90821680610cbe57607f821691505b602082108103610cdc57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610d2957805f5260205f20601f840160051c81016020851015610d075750805b601f840160051c820191505b81811015610d26575f8155600101610d13565b50505b505050565b815167ffffffffffffffff811115610d4857610d48610835565b610d5c81610d568454610caa565b84610ce2565b6020601f821160018114610d8e575f8315610d775750848201515b5f19600385901b1c1916600184901b178455610d26565b5f84815260208120601f198516915b82811015610dbd5787850151825560209485019460019092019101610d9d565b5084821015610dda57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60a081525f610dfb60a0830188610a32565b8281036020840152610e0d8188610a32565b60ff96909616604084015250506001600160a01b0392909216606083015260809091015292915050565b5f82518060208501845e5f92019182525091905056fe610100604052348015610010575f80fd5b505f336001600160a01b031663a5ea11da6040518163ffffffff1660e01b81526004015f60405180830381865afa15801561004d573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610074919081019061035f565b90508060a001515f908161008891906104e8565b505f60405161009791906105a2565b60405190819003902060805260c08101516001906100b590826104e8565b50608081015160ff1660e090815260608201516001600160a01b031660c052602082015160a052810151805160029081906100f090826104e8565b506020820151600182019061010590826104e8565b506040820151600282019061011a90826104e8565b5050506040810151815161012e9190610134565b50610613565b6805345cdf77eb68f44c54818101818110156101575763e5cfe9575f526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52815f526020600c208181540181555080602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b505050565b634e487b7160e01b5f52604160045260245ffd5b60405161010081016001600160401b03811182821017156101ec576101ec6101b5565b60405290565b80516001600160a01b0381168114610208575f80fd5b919050565b805160ff81168114610208575f80fd5b5f82601f83011261022c575f80fd5b81516001600160401b03811115610245576102456101b5565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610273576102736101b5565b60405281815283820160200185101561028a575f80fd5b8160208501602083015e5f918101602001919091529392505050565b5f606082840312156102b6575f80fd5b604051606081016001600160401b03811182821017156102d8576102d86101b5565b604052825190915081906001600160401b038111156102f5575f80fd5b6103018582860161021d565b82525060208301516001600160401b0381111561031c575f80fd5b6103288582860161021d565b60208301525060408301516001600160401b03811115610346575f80fd5b6103528582860161021d565b6040830152505092915050565b5f6020828403121561036f575f80fd5b81516001600160401b03811115610384575f80fd5b82016101008185031215610396575f80fd5b61039e6101c9565b81518152602080830151908201526103b8604083016101f2565b60408201526103c9606083016101f2565b60608201526103da6080830161020d565b608082015260a08201516001600160401b038111156103f7575f80fd5b6104038682850161021d565b60a08301525060c08201516001600160401b03811115610421575f80fd5b61042d8682850161021d565b60c08301525060e08201516001600160401b0381111561044b575f80fd5b610457868285016102a6565b60e083015250949350505050565b600181811c9082168061047957607f821691505b60208210810361049757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156101b057805f5260205f20601f840160051c810160208510156104c25750805b601f840160051c820191505b818110156104e1575f81556001016104ce565b5050505050565b81516001600160401b03811115610501576105016101b5565b6105158161050f8454610465565b8461049d565b6020601f821160018114610547575f83156105305750848201515b5f19600385901b1c1916600184901b1784556104e1565b5f84815260208120601f198516915b828110156105765787850151825560209485019460019092019101610556565b508482101561059357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f8083546105af81610465565b6001821680156105c657600181146105db57610608565b60ff1983168652811515820286019350610608565b865f5260205f205f5b83811015610600578154888201526001909101906020016105e4565b505081860193505b509195945050505050565b60805160a05160c05160e0516115d561064d5f395f6101dc01525f61014601525f6102bf01525f818161051301526109dd01526115d55ff3fe608060405234801561000f575f80fd5b5060043610610115575f3560e01c8063392f37e9116100ad57806395d89b411161007d578063d505accf11610063578063d505accf14610292578063dd62ed3e146102a7578063f56a499f146102ba575f80fd5b806395d89b4114610277578063a9059cbb1461027f575f80fd5b8063392f37e91461020e5780633c130d901461022557806370a082311461022d5780637ecebe0014610252575f80fd5b806318160ddd116100e857806318160ddd146101a857806323b872dd146101c2578063313ce567146101d55780633644e51514610206575f80fd5b806301ffc9a71461011957806302d05d3f1461014157806306fdde0314610180578063095ea7b314610195575b5f80fd5b61012c610127366004611168565b6102e1565b60405190151581526020015b60405180910390f35b6101687f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610138565b610188610332565b60405161013891906111bd565b61012c6101a33660046111ea565b6103c1565b6805345cdf77eb68f44c545b604051908152602001610138565b61012c6101d0366004611212565b610440565b60405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610138565b6101b4610510565b6102166105b2565b6040516101389392919061124c565b61018861075a565b6101b461023b36600461128e565b6387a211a2600c9081525f91909152602090205490565b6101b461026036600461128e565b6338377508600c9081525f91909152602090205490565b610188610925565b61012c61028d3660046111ea565b610934565b6102a56102a03660046112a7565b6109ab565b005b6101b46102b5366004611314565b610b96565b6101b47f000000000000000000000000000000000000000000000000000000000000000081565b5f6001600160e01b031982166301ffc9a760e01b148061031157506001600160e01b031982166336372b0760e01b145b8061032c57506001600160e01b03198216634ec7fbed60e11b145b92915050565b60605f805461034090611345565b80601f016020809104026020016040519081016040528092919081815260200182805461036c90611345565b80156103b75780601f1061038e576101008083540402835291602001916103b7565b820191905f5260205f20905b81548152906001019060200180831161039a57829003601f168201915b5050505050905090565b5f6001600160a01b0383166e22d473030f116ddee9f6b43ac78ba318821915176103f257633f68539a5f526004601cfd5b82602052637f5e9f20600c52335f52816034600c2055815f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa350600192915050565b5f8360601b6e22d473030f116ddee9f6b43ac78ba333146104955733602052637f5e9f208117600c526034600c208054801915610492578085111561048c576313be252b5f526004601cfd5b84810382555b50505b6387a211a28117600c526020600c208054808511156104bb5763f4d678b85f526004601cfd5b84810382555050835f526020600c208381540181555082602052600c5160601c8160601c7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a3505060015b9392505050565b5f7f0000000000000000000000000000000000000000000000000000000000000000806105495761053f610332565b8051906020012090505b604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f815260208101929092527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc69082015246606082015230608082015260a09020919050565b6002805481906105c190611345565b80601f01602080910402602001604051908101604052809291908181526020018280546105ed90611345565b80156106385780601f1061060f57610100808354040283529160200191610638565b820191905f5260205f20905b81548152906001019060200180831161061b57829003601f168201915b50505050509080600101805461064d90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461067990611345565b80156106c45780601f1061069b576101008083540402835291602001916106c4565b820191905f5260205f20905b8154815290600101906020018083116106a757829003601f168201915b5050505050908060020180546106d990611345565b80601f016020809104026020016040519081016040528092919081815260200182805461070590611345565b80156107505780601f1061072757610100808354040283529160200191610750565b820191905f5260205f20905b81548152906001019060200180831161073357829003601f168201915b5050505050905083565b606061092060026040518060600160405290815f8201805461077b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546107a790611345565b80156107f25780601f106107c9576101008083540402835291602001916107f2565b820191905f5260205f20905b8154815290600101906020018083116107d557829003601f168201915b5050505050815260200160018201805461080b90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461083790611345565b80156108825780601f1061085957610100808354040283529160200191610882565b820191905f5260205f20905b81548152906001019060200180831161086557829003601f168201915b5050505050815260200160028201805461089b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546108c790611345565b80156109125780601f106108e957610100808354040283529160200191610912565b820191905f5260205f20905b8154815290600101906020018083116108f557829003601f168201915b505050505081525050610bda565b905090565b60606001805461034090611345565b5f6387a211a2600c52335f526020600c2080548084111561095c5763f4d678b85f526004601cfd5b83810382555050825f526020600c208281540181555081602052600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a350600192915050565b6001600160a01b0386166e22d473030f116ddee9f6b43ac78ba318851915176109db57633f68539a5f526004601cfd5b7f000000000000000000000000000000000000000000000000000000000000000080610a1357610a09610332565b8051906020012090505b7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc642861015610a4957631a15a3cc5f526004601cfd5b6040518960601b60601c99508860601b60601c985065383775081901600e52895f526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835284602084015283604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528b60208401528a60408401528960608401528060808401528860a084015260c08320604e526042602c205f528760ff16602052866040528560605260208060805f60015afa8c3d5114610b315763ddafbaef5f526004601cfd5b019055777f5e9f20000000000000000000000000000000000000000089176040526034602c20889055888a7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250505f60605250505050505050565b5f6e22d473030f116ddee9f6b43ac78ba2196001600160a01b03831601610bbf57505f1961032c565b50602052637f5e9f20600c9081525f91909152603490205490565b6060610bed610be883610c13565b610d75565b604051602001610bfd9190611394565b6040516020818303038152906040529050919050565b60605f604051602001610c2d90607b60f81b815260010190565b60408051601f198184030181529190528351519091505f9015610c7e5781610c57855f0151610d9b565b604051602001610c689291906113c5565b6040516020818303038152906040529150600190505b60208401515115610ce7578015610cb25781604051602001610ca09190611413565b60405160208183030381529060405291505b81610cc08560200151610d9b565b604051602001610cd1929190611430565b6040516020818303038152906040529150600190505b60408401515115610d4c578015610d1b5781604051602001610d099190611413565b60405160208183030381529060405291505b81610d298560400151610d9b565b604051602001610d3a92919061146b565b60405160208183030381529060405291505b81604051602001610d5d91906114a6565b60405160208183030381529060405292505050919050565b606061032c82604051806060016040528060408152602001611560604091396001610fed565b805160609082905f90610daf9060026114d6565b67ffffffffffffffff811115610dc757610dc76114ed565b6040519080825280601f01601f191660200182016040528015610df1576020820181803683370190505b5090505f805b8351811015610fd6575f610e0e8583016020015190565b90506b100000000000000400003700600160f883901c1b1615610f9857601760fa1b8484610e3b81611501565b955081518110610e4d57610e4d611519565b60200101906001600160f81b03191690815f1a9053506001600160f81b03198116600160fb1b03610eb557603160f91b8484610e8881611501565b955081518110610e9a57610e9a611519565b60200101906001600160f81b03191690815f1a905350610fcd565b6001600160f81b03198116600960f81b03610eda57601d60fa1b8484610e8881611501565b6001600160f81b03198116600560f91b03610eff57603760f91b8484610e8881611501565b6001600160f81b03198116600360fa1b03610f2457603360f91b8484610e8881611501565b6001600160f81b03198116600d60f81b03610f4957603960f91b8484610e8881611501565b6001600160f81b03198116601760fa1b03610f6e57601760fa1b8484610e8881611501565b6001600160f81b03198116601160f91b03610f9357601160f91b8484610e8881611501565b610fcd565b808484610fa481611501565b955081518110610fb657610fb6611519565b60200101906001600160f81b03191690815f1a9053505b50600101610df7565b50808252603f01601f191681016040529392505050565b606083515f0361100b575060408051602081019091525f8152610509565b5f8261103b5760038551600461102191906114d6565b61102c90600261152d565b6110369190611540565b611060565b60038551600261104b919061152d565b6110559190611540565b6110609060046114d6565b90505f8167ffffffffffffffff81111561107c5761107c6114ed565b6040519080825280601f01601f1916602001820160405280156110a6576020820181803683370190505b509050600185016020820187885189016020810180515f82525b8284101561111b576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f81168701518653506001850194506110c0565b90525050851561115c5760038851066001811461113f57600281146111525761115a565b603d6001830353603d600283035361115a565b603d60018303535b505b50909695505050505050565b5f60208284031215611178575f80fd5b81356001600160e01b031981168114610509575f80fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610509602083018461118f565b80356001600160a01b03811681146111e5575f80fd5b919050565b5f80604083850312156111fb575f80fd5b611204836111cf565b946020939093013593505050565b5f805f60608486031215611224575f80fd5b61122d846111cf565b925061123b602085016111cf565b929592945050506040919091013590565b606081525f61125e606083018661118f565b8281036020840152611270818661118f565b90508281036040840152611284818561118f565b9695505050505050565b5f6020828403121561129e575f80fd5b610509826111cf565b5f805f805f805f60e0888a0312156112bd575f80fd5b6112c6886111cf565b96506112d4602089016111cf565b95506040880135945060608801359350608088013560ff811681146112f7575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611325575f80fd5b61132e836111cf565b915061133c602084016111cf565b90509250929050565b600181811c9082168061135957607f821691505b60208210810361137757634e487b7160e01b5f52602260045260245ffd5b50919050565b5f81518060208401855e5f93019283525090919050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610509601d83018461137d565b5f6113d0828561137d565b7f226465736372697074696f6e223a2200000000000000000000000000000000008152611400600f82018561137d565b601160f91b815260010195945050505050565b5f61141e828461137d565b61016160f51b81526002019392505050565b5f61143b828561137d565b7f2277656273697465223a220000000000000000000000000000000000000000008152611400600b82018561137d565b5f611476828561137d565b7f22696d616765223a2200000000000000000000000000000000000000000000008152611400600982018561137d565b5f6114b1828461137d565b607d60f81b81526001019392505050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761032c5761032c6114c2565b634e487b7160e01b5f52604160045260245ffd5b5f60018201611512576115126114c2565b5060010190565b634e487b7160e01b5f52603260045260245ffd5b8082018082111561032c5761032c6114c2565b5f8261155a57634e487b7160e01b5f52601260045260245ffd5b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa26469706673582212200c37574c8afe8cc98a769791072d75b049417da3ba0da8d46af9ba3b6dcac4e764736f6c634300081a0033a2646970667358221220d3d06cc3ba5061994eec84a289f36e841b8b697cea37c3856fe1f8d5ec274b6564736f6c634300081a0033
Deployed Bytecode
0x608060405234801561000f575f80fd5b506004361061003f575f3560e01c8063a255e0ad14610043578063a5ea11da14610073578063f752070e14610088575b5f80fd5b61005661005136600461096d565b61009b565b6040516001600160a01b0390911681526020015b60405180910390f35b61007b610358565b60405161006a9190610ab0565b610056610096366004610b5c565b610696565b5f806100a984860186610be8565b90506001600160a01b0386166100d257604051636c38382960e11b815260040160405180910390fd5b865f036100f257604051637ceabcb560e11b815260040160405180910390fd5b6040805161010081018252888152602081018590526001600160a01b038816918101829052336060820181905260ff8b166080830181905260a083018e905260c083018d905260e083018590525f8b815560018890556002805473ffffffffffffffffffffffffffffffffffffffff19169095179094556003805474ffffffffffffffffffffffffffffffffffffffffff19167fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217600160a01b9091021790559060046101c58d82610d2e565b5060c082015160058201906101da9082610d2e565b5060e08201518051600683019081906101f39082610d2e565b50602082015160018201906102089082610d2e565b506040820151600282019061021d9082610d2e565b5050509050505f8a8a8a338760405160200161023d959493929190610de9565b604051602081830303815290604052805190602001209050806040516102629061075d565b8190604051809103905ff590508015801561027f573d5f803e3d5ffd5b505f80805560018190556002805473ffffffffffffffffffffffffffffffffffffffff191690556003805474ffffffffffffffffffffffffffffffffffffffffff19169055909350806102d360048261076a565b6102e0600583015f61076a565b600682015f6102ef828261076a565b6102fc600183015f61076a565b610309600283015f61076a565b50506040516001600160a01b03861681527f2e2b3f61b70d2d131b2a807371103cc98d51adcaa5e9a8f9c32658ad8426e74e9250602001905060405180910390a1505098975050505050505050565b6103606107a4565b60408051610100810182525f8054825260015460208301526002546001600160a01b03908116938301939093526003549283166060830152600160a01b90920460ff1660808201526004805491929160a0840191906103be90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546103ea90610caa565b80156104355780601f1061040c57610100808354040283529160200191610435565b820191905f5260205f20905b81548152906001019060200180831161041857829003601f168201915b5050505050815260200160058201805461044e90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461047a90610caa565b80156104c55780601f1061049c576101008083540402835291602001916104c5565b820191905f5260205f20905b8154815290600101906020018083116104a857829003601f168201915b50505050508152602001600682016040518060600160405290815f820180546104ed90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461051990610caa565b80156105645780601f1061053b57610100808354040283529160200191610564565b820191905f5260205f20905b81548152906001019060200180831161054757829003601f168201915b5050505050815260200160018201805461057d90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546105a990610caa565b80156105f45780601f106105cb576101008083540402835291602001916105f4565b820191905f5260205f20905b8154815290600101906020018083116105d757829003601f168201915b5050505050815260200160028201805461060d90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461063990610caa565b80156106845780601f1061065b57610100808354040283529160200191610684565b820191905f5260205f20905b81548152906001019060200180831161066757829003601f168201915b50505050508152505081525050905090565b5f8086868686866040516020016106b1959493929190610de9565b6040516020818303038152906040528051906020012090505f604051806020016106da9061075d565b601f1982820381018352601f9091011660408190526106fc9190602001610e37565b60405160208183030381529060405280519060200120905061071f82823061072b565b98975050505050505050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b611c2280610e4e83390190565b50805461077690610caa565b5f825580601f10610785575050565b601f0160209004905f5260205f20908101906107a1919061081d565b50565b6040518061010001604052805f81526020015f80191681526020015f6001600160a01b031681526020015f6001600160a01b031681526020015f60ff168152602001606081526020016060815260200161081860405180606001604052806060815260200160608152602001606081525090565b905290565b5b80821115610831575f815560010161081e565b5090565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561086c5761086c610835565b60405290565b5f82601f830112610881575f80fd5b813567ffffffffffffffff81111561089b5761089b610835565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156108ca576108ca610835565b6040528181528382016020018510156108e1575f80fd5b816020850160208301375f918101602001919091529392505050565b803560ff8116811461090d575f80fd5b919050565b80356001600160a01b038116811461090d575f80fd5b5f8083601f840112610938575f80fd5b50813567ffffffffffffffff81111561094f575f80fd5b602083019150836020828501011115610966575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610984575f80fd5b883567ffffffffffffffff81111561099a575f80fd5b6109a68b828c01610872565b985050602089013567ffffffffffffffff8111156109c2575f80fd5b6109ce8b828c01610872565b9750506109dd60408a016108fd565b9550606089013594506109f260808a01610912565b935060a089013567ffffffffffffffff811115610a0d575f80fd5b610a198b828c01610928565b999c989b50969995989497949560c00135949350505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f815160608452610a746060850182610a32565b905060208301518482036020860152610a8d8282610a32565b91505060408301518482036040860152610aa78282610a32565b95945050505050565b6020815281516020820152602082015160408201525f6040830151610ae060608401826001600160a01b03169052565b5060608301516001600160a01b038116608084015250608083015160ff811660a08401525060a083015161010060c0840152610b20610120840182610a32565b905060c0840151601f198483030160e0850152610b3d8282610a32565b91505060e0840151601f1984830301610100850152610aa78282610a60565b5f805f805f60a08688031215610b70575f80fd5b853567ffffffffffffffff811115610b86575f80fd5b610b9288828901610872565b955050602086013567ffffffffffffffff811115610bae575f80fd5b610bba88828901610872565b945050610bc9604087016108fd565b9250610bd760608701610912565b949793965091946080013592915050565b5f60208284031215610bf8575f80fd5b813567ffffffffffffffff811115610c0e575f80fd5b820160608185031215610c1f575f80fd5b610c27610849565b813567ffffffffffffffff811115610c3d575f80fd5b610c4986828501610872565b825250602082013567ffffffffffffffff811115610c65575f80fd5b610c7186828501610872565b602083015250604082013567ffffffffffffffff811115610c90575f80fd5b610c9c86828501610872565b604083015250949350505050565b600181811c90821680610cbe57607f821691505b602082108103610cdc57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610d2957805f5260205f20601f840160051c81016020851015610d075750805b601f840160051c820191505b81811015610d26575f8155600101610d13565b50505b505050565b815167ffffffffffffffff811115610d4857610d48610835565b610d5c81610d568454610caa565b84610ce2565b6020601f821160018114610d8e575f8315610d775750848201515b5f19600385901b1c1916600184901b178455610d26565b5f84815260208120601f198516915b82811015610dbd5787850151825560209485019460019092019101610d9d565b5084821015610dda57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60a081525f610dfb60a0830188610a32565b8281036020840152610e0d8188610a32565b60ff96909616604084015250506001600160a01b0392909216606083015260809091015292915050565b5f82518060208501845e5f92019182525091905056fe610100604052348015610010575f80fd5b505f336001600160a01b031663a5ea11da6040518163ffffffff1660e01b81526004015f60405180830381865afa15801561004d573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610074919081019061035f565b90508060a001515f908161008891906104e8565b505f60405161009791906105a2565b60405190819003902060805260c08101516001906100b590826104e8565b50608081015160ff1660e090815260608201516001600160a01b031660c052602082015160a052810151805160029081906100f090826104e8565b506020820151600182019061010590826104e8565b506040820151600282019061011a90826104e8565b5050506040810151815161012e9190610134565b50610613565b6805345cdf77eb68f44c54818101818110156101575763e5cfe9575f526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52815f526020600c208181540181555080602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b505050565b634e487b7160e01b5f52604160045260245ffd5b60405161010081016001600160401b03811182821017156101ec576101ec6101b5565b60405290565b80516001600160a01b0381168114610208575f80fd5b919050565b805160ff81168114610208575f80fd5b5f82601f83011261022c575f80fd5b81516001600160401b03811115610245576102456101b5565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610273576102736101b5565b60405281815283820160200185101561028a575f80fd5b8160208501602083015e5f918101602001919091529392505050565b5f606082840312156102b6575f80fd5b604051606081016001600160401b03811182821017156102d8576102d86101b5565b604052825190915081906001600160401b038111156102f5575f80fd5b6103018582860161021d565b82525060208301516001600160401b0381111561031c575f80fd5b6103288582860161021d565b60208301525060408301516001600160401b03811115610346575f80fd5b6103528582860161021d565b6040830152505092915050565b5f6020828403121561036f575f80fd5b81516001600160401b03811115610384575f80fd5b82016101008185031215610396575f80fd5b61039e6101c9565b81518152602080830151908201526103b8604083016101f2565b60408201526103c9606083016101f2565b60608201526103da6080830161020d565b608082015260a08201516001600160401b038111156103f7575f80fd5b6104038682850161021d565b60a08301525060c08201516001600160401b03811115610421575f80fd5b61042d8682850161021d565b60c08301525060e08201516001600160401b0381111561044b575f80fd5b610457868285016102a6565b60e083015250949350505050565b600181811c9082168061047957607f821691505b60208210810361049757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156101b057805f5260205f20601f840160051c810160208510156104c25750805b601f840160051c820191505b818110156104e1575f81556001016104ce565b5050505050565b81516001600160401b03811115610501576105016101b5565b6105158161050f8454610465565b8461049d565b6020601f821160018114610547575f83156105305750848201515b5f19600385901b1c1916600184901b1784556104e1565b5f84815260208120601f198516915b828110156105765787850151825560209485019460019092019101610556565b508482101561059357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f8083546105af81610465565b6001821680156105c657600181146105db57610608565b60ff1983168652811515820286019350610608565b865f5260205f205f5b83811015610600578154888201526001909101906020016105e4565b505081860193505b509195945050505050565b60805160a05160c05160e0516115d561064d5f395f6101dc01525f61014601525f6102bf01525f818161051301526109dd01526115d55ff3fe608060405234801561000f575f80fd5b5060043610610115575f3560e01c8063392f37e9116100ad57806395d89b411161007d578063d505accf11610063578063d505accf14610292578063dd62ed3e146102a7578063f56a499f146102ba575f80fd5b806395d89b4114610277578063a9059cbb1461027f575f80fd5b8063392f37e91461020e5780633c130d901461022557806370a082311461022d5780637ecebe0014610252575f80fd5b806318160ddd116100e857806318160ddd146101a857806323b872dd146101c2578063313ce567146101d55780633644e51514610206575f80fd5b806301ffc9a71461011957806302d05d3f1461014157806306fdde0314610180578063095ea7b314610195575b5f80fd5b61012c610127366004611168565b6102e1565b60405190151581526020015b60405180910390f35b6101687f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610138565b610188610332565b60405161013891906111bd565b61012c6101a33660046111ea565b6103c1565b6805345cdf77eb68f44c545b604051908152602001610138565b61012c6101d0366004611212565b610440565b60405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610138565b6101b4610510565b6102166105b2565b6040516101389392919061124c565b61018861075a565b6101b461023b36600461128e565b6387a211a2600c9081525f91909152602090205490565b6101b461026036600461128e565b6338377508600c9081525f91909152602090205490565b610188610925565b61012c61028d3660046111ea565b610934565b6102a56102a03660046112a7565b6109ab565b005b6101b46102b5366004611314565b610b96565b6101b47f000000000000000000000000000000000000000000000000000000000000000081565b5f6001600160e01b031982166301ffc9a760e01b148061031157506001600160e01b031982166336372b0760e01b145b8061032c57506001600160e01b03198216634ec7fbed60e11b145b92915050565b60605f805461034090611345565b80601f016020809104026020016040519081016040528092919081815260200182805461036c90611345565b80156103b75780601f1061038e576101008083540402835291602001916103b7565b820191905f5260205f20905b81548152906001019060200180831161039a57829003601f168201915b5050505050905090565b5f6001600160a01b0383166e22d473030f116ddee9f6b43ac78ba318821915176103f257633f68539a5f526004601cfd5b82602052637f5e9f20600c52335f52816034600c2055815f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa350600192915050565b5f8360601b6e22d473030f116ddee9f6b43ac78ba333146104955733602052637f5e9f208117600c526034600c208054801915610492578085111561048c576313be252b5f526004601cfd5b84810382555b50505b6387a211a28117600c526020600c208054808511156104bb5763f4d678b85f526004601cfd5b84810382555050835f526020600c208381540181555082602052600c5160601c8160601c7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a3505060015b9392505050565b5f7f0000000000000000000000000000000000000000000000000000000000000000806105495761053f610332565b8051906020012090505b604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f815260208101929092527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc69082015246606082015230608082015260a09020919050565b6002805481906105c190611345565b80601f01602080910402602001604051908101604052809291908181526020018280546105ed90611345565b80156106385780601f1061060f57610100808354040283529160200191610638565b820191905f5260205f20905b81548152906001019060200180831161061b57829003601f168201915b50505050509080600101805461064d90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461067990611345565b80156106c45780601f1061069b576101008083540402835291602001916106c4565b820191905f5260205f20905b8154815290600101906020018083116106a757829003601f168201915b5050505050908060020180546106d990611345565b80601f016020809104026020016040519081016040528092919081815260200182805461070590611345565b80156107505780601f1061072757610100808354040283529160200191610750565b820191905f5260205f20905b81548152906001019060200180831161073357829003601f168201915b5050505050905083565b606061092060026040518060600160405290815f8201805461077b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546107a790611345565b80156107f25780601f106107c9576101008083540402835291602001916107f2565b820191905f5260205f20905b8154815290600101906020018083116107d557829003601f168201915b5050505050815260200160018201805461080b90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461083790611345565b80156108825780601f1061085957610100808354040283529160200191610882565b820191905f5260205f20905b81548152906001019060200180831161086557829003601f168201915b5050505050815260200160028201805461089b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546108c790611345565b80156109125780601f106108e957610100808354040283529160200191610912565b820191905f5260205f20905b8154815290600101906020018083116108f557829003601f168201915b505050505081525050610bda565b905090565b60606001805461034090611345565b5f6387a211a2600c52335f526020600c2080548084111561095c5763f4d678b85f526004601cfd5b83810382555050825f526020600c208281540181555081602052600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a350600192915050565b6001600160a01b0386166e22d473030f116ddee9f6b43ac78ba318851915176109db57633f68539a5f526004601cfd5b7f000000000000000000000000000000000000000000000000000000000000000080610a1357610a09610332565b8051906020012090505b7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc642861015610a4957631a15a3cc5f526004601cfd5b6040518960601b60601c99508860601b60601c985065383775081901600e52895f526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835284602084015283604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528b60208401528a60408401528960608401528060808401528860a084015260c08320604e526042602c205f528760ff16602052866040528560605260208060805f60015afa8c3d5114610b315763ddafbaef5f526004601cfd5b019055777f5e9f20000000000000000000000000000000000000000089176040526034602c20889055888a7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250505f60605250505050505050565b5f6e22d473030f116ddee9f6b43ac78ba2196001600160a01b03831601610bbf57505f1961032c565b50602052637f5e9f20600c9081525f91909152603490205490565b6060610bed610be883610c13565b610d75565b604051602001610bfd9190611394565b6040516020818303038152906040529050919050565b60605f604051602001610c2d90607b60f81b815260010190565b60408051601f198184030181529190528351519091505f9015610c7e5781610c57855f0151610d9b565b604051602001610c689291906113c5565b6040516020818303038152906040529150600190505b60208401515115610ce7578015610cb25781604051602001610ca09190611413565b60405160208183030381529060405291505b81610cc08560200151610d9b565b604051602001610cd1929190611430565b6040516020818303038152906040529150600190505b60408401515115610d4c578015610d1b5781604051602001610d099190611413565b60405160208183030381529060405291505b81610d298560400151610d9b565b604051602001610d3a92919061146b565b60405160208183030381529060405291505b81604051602001610d5d91906114a6565b60405160208183030381529060405292505050919050565b606061032c82604051806060016040528060408152602001611560604091396001610fed565b805160609082905f90610daf9060026114d6565b67ffffffffffffffff811115610dc757610dc76114ed565b6040519080825280601f01601f191660200182016040528015610df1576020820181803683370190505b5090505f805b8351811015610fd6575f610e0e8583016020015190565b90506b100000000000000400003700600160f883901c1b1615610f9857601760fa1b8484610e3b81611501565b955081518110610e4d57610e4d611519565b60200101906001600160f81b03191690815f1a9053506001600160f81b03198116600160fb1b03610eb557603160f91b8484610e8881611501565b955081518110610e9a57610e9a611519565b60200101906001600160f81b03191690815f1a905350610fcd565b6001600160f81b03198116600960f81b03610eda57601d60fa1b8484610e8881611501565b6001600160f81b03198116600560f91b03610eff57603760f91b8484610e8881611501565b6001600160f81b03198116600360fa1b03610f2457603360f91b8484610e8881611501565b6001600160f81b03198116600d60f81b03610f4957603960f91b8484610e8881611501565b6001600160f81b03198116601760fa1b03610f6e57601760fa1b8484610e8881611501565b6001600160f81b03198116601160f91b03610f9357601160f91b8484610e8881611501565b610fcd565b808484610fa481611501565b955081518110610fb657610fb6611519565b60200101906001600160f81b03191690815f1a9053505b50600101610df7565b50808252603f01601f191681016040529392505050565b606083515f0361100b575060408051602081019091525f8152610509565b5f8261103b5760038551600461102191906114d6565b61102c90600261152d565b6110369190611540565b611060565b60038551600261104b919061152d565b6110559190611540565b6110609060046114d6565b90505f8167ffffffffffffffff81111561107c5761107c6114ed565b6040519080825280601f01601f1916602001820160405280156110a6576020820181803683370190505b509050600185016020820187885189016020810180515f82525b8284101561111b576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f81168701518653506001850194506110c0565b90525050851561115c5760038851066001811461113f57600281146111525761115a565b603d6001830353603d600283035361115a565b603d60018303535b505b50909695505050505050565b5f60208284031215611178575f80fd5b81356001600160e01b031981168114610509575f80fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610509602083018461118f565b80356001600160a01b03811681146111e5575f80fd5b919050565b5f80604083850312156111fb575f80fd5b611204836111cf565b946020939093013593505050565b5f805f60608486031215611224575f80fd5b61122d846111cf565b925061123b602085016111cf565b929592945050506040919091013590565b606081525f61125e606083018661118f565b8281036020840152611270818661118f565b90508281036040840152611284818561118f565b9695505050505050565b5f6020828403121561129e575f80fd5b610509826111cf565b5f805f805f805f60e0888a0312156112bd575f80fd5b6112c6886111cf565b96506112d4602089016111cf565b95506040880135945060608801359350608088013560ff811681146112f7575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611325575f80fd5b61132e836111cf565b915061133c602084016111cf565b90509250929050565b600181811c9082168061135957607f821691505b60208210810361137757634e487b7160e01b5f52602260045260245ffd5b50919050565b5f81518060208401855e5f93019283525090919050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610509601d83018461137d565b5f6113d0828561137d565b7f226465736372697074696f6e223a2200000000000000000000000000000000008152611400600f82018561137d565b601160f91b815260010195945050505050565b5f61141e828461137d565b61016160f51b81526002019392505050565b5f61143b828561137d565b7f2277656273697465223a220000000000000000000000000000000000000000008152611400600b82018561137d565b5f611476828561137d565b7f22696d616765223a2200000000000000000000000000000000000000000000008152611400600982018561137d565b5f6114b1828461137d565b607d60f81b81526001019392505050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761032c5761032c6114c2565b634e487b7160e01b5f52604160045260245ffd5b5f60018201611512576115126114c2565b5060010190565b634e487b7160e01b5f52603260045260245ffd5b8082018082111561032c5761032c6114c2565b5f8261155a57634e487b7160e01b5f52601260045260245ffd5b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa26469706673582212200c37574c8afe8cc98a769791072d75b049417da3ba0da8d46af9ba3b6dcac4e764736f6c634300081a0033a2646970667358221220d3d06cc3ba5061994eec84a289f36e841b8b697cea37c3856fe1f8d5ec274b6564736f6c634300081a0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.