ETH Price: $2,932.58 (-0.86%)

Contract

0xdF15F1ebD814A6Eb2bb5bC9582cD1580b1745Be1

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

> 10 Internal Transactions found.

Latest 11 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
385686252026-01-25 4:56:245 hrs ago1769316984
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
385496042026-01-24 23:39:2310 hrs ago1769297963
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
385467562026-01-24 22:51:5511 hrs ago1769295115
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384927292026-01-24 7:51:2826 hrs ago1769241088
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384882982026-01-24 6:37:3727 hrs ago1769236657
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384868692026-01-24 6:13:4827 hrs ago1769235228
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384813552026-01-24 4:41:5429 hrs ago1769229714
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384076172026-01-23 8:12:562 days ago1769155976
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
384061762026-01-23 7:48:552 days ago1769154535
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
383780272026-01-22 23:59:462 days ago1769126386
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH
383173132026-01-22 7:07:523 days ago1769065672
0xdF15F1eb...0b1745Be1
 Contract Creation0 ETH

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
UERC20Factory

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 800 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {UERC20} from "../tokens/UERC20.sol";
import {IUERC20Factory} from "../interfaces/IUERC20Factory.sol";
import {ITokenFactory} from "../interfaces/ITokenFactory.sol";
import {UERC20Metadata} from "../libraries/UERC20MetadataLibrary.sol";
import {Create2} from "@openzeppelin-latest/contracts/utils/Create2.sol";

/// @title UERC20Factory
/// @notice Deploys new UERC20 contracts
contract UERC20Factory is IUERC20Factory {
    /// @dev Parameters stored transiently for token initialization
    Parameters private parameters;

    /// @inheritdoc IUERC20Factory
    function getUERC20Address(
        string memory name,
        string memory symbol,
        uint8 decimals,
        address creator,
        bytes32 graffiti
    ) external view returns (address) {
        bytes32 salt = keccak256(abi.encode(name, symbol, decimals, creator, graffiti));
        bytes32 initCodeHash = keccak256(abi.encodePacked(type(UERC20).creationCode));
        return Create2.computeAddress(salt, initCodeHash, address(this));
    }

    /// @inheritdoc IUERC20Factory
    function getParameters() external view returns (Parameters memory) {
        return parameters;
    }

    /// @inheritdoc ITokenFactory
    function createToken(
        string memory name,
        string memory symbol,
        uint8 decimals,
        uint256 totalSupply,
        address recipient,
        bytes calldata data,
        bytes32 graffiti
    ) external returns (address tokenAddress) {
        (UERC20Metadata memory metadata) = abi.decode(data, (UERC20Metadata));

        if (recipient == address(0)) {
            revert RecipientCannotBeZeroAddress();
        }
        if (totalSupply == 0) {
            revert TotalSupplyCannotBeZero();
        }

        // Store parameters transiently for token to access during construction
        parameters = Parameters({
            name: name,
            symbol: symbol,
            totalSupply: totalSupply,
            recipient: recipient,
            decimals: decimals,
            creator: msg.sender,
            metadata: metadata,
            graffiti: graffiti
        });

        // Compute salt based on the core parameters that define a token's identity
        bytes32 salt = keccak256(abi.encode(name, symbol, decimals, msg.sender, graffiti));

        // Deploy the token with the computed salt
        tokenAddress = address(new UERC20{salt: salt}());

        // Clear parameters after deployment
        delete parameters;

        emit TokenCreated(tokenAddress);
    }
}

File 2 of 19 : UERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {IUERC20Factory} from "../interfaces/IUERC20Factory.sol";
import {BaseUERC20} from "./BaseUERC20.sol";

/// @title UERC20
/// @notice ERC20 token contract
contract UERC20 is BaseUERC20 {
    constructor() {
        IUERC20Factory.Parameters memory params = IUERC20Factory(msg.sender).getParameters();

        _name = params.name;
        _nameHash = keccak256(bytes(_name));
        _symbol = params.symbol;
        _decimals = params.decimals;
        creator = params.creator;
        graffiti = params.graffiti;
        metadata = params.metadata;

        _mint(params.recipient, params.totalSupply);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {UERC20Metadata} from "../libraries/UERC20MetadataLibrary.sol";
import {ITokenFactory} from "./ITokenFactory.sol";

/// @title IUERC20Factory
/// @notice Interface for the IUERC20Factory contract
interface IUERC20Factory is ITokenFactory {
    /// @notice Parameters struct to be used by the UERC20 during construction
    struct Parameters {
        uint256 totalSupply;
        bytes32 graffiti;
        address recipient;
        address creator;
        uint8 decimals;
        string name;
        string symbol;
        UERC20Metadata metadata;
    }

    /// @notice Computes the deterministic address for a token based on its core parameters
    /// @param name The name of the token
    /// @param symbol The symbol of the token
    /// @param decimals The number of decimals the token uses
    /// @param creator The creator of the token
    /// @param graffiti Additional data needed to compute the salt
    /// @return The deterministic address of the token
    function getUERC20Address(
        string memory name,
        string memory symbol,
        uint8 decimals,
        address creator,
        bytes32 graffiti
    ) external view returns (address);

    /// @notice Gets the parameters for token initialization
    /// @return The parameters structure with all token initialization data
    function getParameters() external view returns (Parameters memory);
}

File 4 of 19 : ITokenFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ITokenFactory
/// @notice Generic interface for a token factory.
interface ITokenFactory {
    /// @notice Emitted when a new token is created
    event TokenCreated(address tokenAddress);

    /// @notice Thrown when the recipient is the zero address
    error RecipientCannotBeZeroAddress();

    /// @notice Thrown when the initial supply is zero
    error TotalSupplyCannotBeZero();

    /// @notice Creates a new token contract
    /// @param name          The ERC20-style name of the token.
    /// @param symbol        The ERC20-style symbol of the token.
    /// @param decimals      The number of decimal places for the token.
    /// @param initialSupply The initial supply to mint upon creation.
    /// @param recipient     The recipient of the initial supply.
    /// @param data          Additional factory-specific data required for token creation.
    /// @param graffiti      Additional data to be included in the token's salt
    /// @return tokenAddress The address of the newly created token.
    function createToken(
        string calldata name,
        string calldata symbol,
        uint8 decimals,
        uint256 initialSupply,
        address recipient,
        bytes calldata data,
        bytes32 graffiti
    ) external returns (address tokenAddress);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Base64} from "@openzeppelin-latest/contracts/utils/Base64.sol";
import {Strings} from "@openzeppelin-latest/contracts/utils/Strings.sol";

struct UERC20Metadata {
    string description;
    string website;
    string image;
}

/// @title UERC20MetadataLibrary
/// @notice Library for generating base64 encoded JSON token metadata
/// @dev If no fields are provided, returns an empty JSON object.
library UERC20MetadataLibrary {
    using Strings for *;

    /// @notice Generates a base64 encoded JSON string of the token metadata
    /// @param metadata The token metadata
    /// @return The base64 encoded JSON string
    function toJSON(UERC20Metadata memory metadata) internal pure returns (string memory) {
        return string(abi.encodePacked("data:application/json;base64,", Base64.encode(displayMetadata(metadata))));
    }

    /// @notice Generates an abi encoded JSON string of the token metadata
    /// @param metadata The token metadata
    /// @return The abi encoded JSON string
    function displayMetadata(UERC20Metadata memory metadata) private pure returns (bytes memory) {
        bytes memory json = abi.encodePacked("{");
        bool hasField;

        if (bytes(metadata.description).length > 0) {
            json = abi.encodePacked(json, '"description":"', metadata.description.escapeJSON(), '"');
            hasField = true;
        }
        if (bytes(metadata.website).length > 0) {
            if (hasField) json = abi.encodePacked(json, ", ");
            json = abi.encodePacked(json, '"website":"', metadata.website.escapeJSON(), '"');
            hasField = true;
        }
        if (bytes(metadata.image).length > 0) {
            if (hasField) json = abi.encodePacked(json, ", ");
            json = abi.encodePacked(json, '"image":"', metadata.image.escapeJSON(), '"');
        }

        return abi.encodePacked(json, "}");
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {ERC20} from "@solady/src/tokens/ERC20.sol";
import {IERC20} from "@openzeppelin-latest/contracts/token/ERC20/IERC20.sol";
import {IERC165} from "@openzeppelin-latest/contracts/interfaces/IERC165.sol";
import {IERC20Permit} from "@openzeppelin-latest/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {UERC20Metadata, UERC20MetadataLibrary} from "../libraries/UERC20MetadataLibrary.sol";

/// @title BaseUERC20
/// @notice ERC20 token contract
/// @dev Uses solady for default permit2 approval
/// @dev Implementing contract should initialise global variables and mint any initial supply
abstract contract BaseUERC20 is ERC20, IERC165 {
    using UERC20MetadataLibrary for UERC20Metadata;

    /// @dev Cached hash of the token name for gas-efficient EIP-712 operations.
    /// This immutable value is computed once during construction and used by the
    /// underlying ERC20 implementation for permit functionality.
    bytes32 internal immutable _nameHash;

    // Core parameters that define token identity
    bytes32 public immutable graffiti;
    address public immutable creator;
    uint8 internal immutable _decimals;
    string internal _name;
    string internal _symbol;
    // Metadata that may have extended information
    UERC20Metadata public metadata;

    /// @notice Returns the URI of the token metadata.
    function tokenURI() external view returns (string memory) {
        return metadata.toJSON();
    }

    /// @notice Returns the name of the token.
    function name() public view override returns (string memory) {
        return _name;
    }

    /// @notice Returns the symbol of the token.
    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    /// @notice Returns the decimals places of the token.
    function decimals() public view override returns (uint8) {
        return _decimals;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 _interfaceId) public view virtual returns (bool) {
        return _interfaceId == type(IERC165).interfaceId || _interfaceId == type(IERC20).interfaceId
            || _interfaceId == type(IERC20Permit).interfaceId;
    }

    /// @inheritdoc ERC20
    function _constantNameHash() internal view override returns (bytes32) {
        return _nameHash;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 10 of 19 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /// @dev The allowance of Permit2 is fixed at infinity.
    error Permit2AllowanceIsFixedAtInfinity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    /// If you need to use a different version, override `_versionHash`.
    bytes32 private constant _DEFAULT_VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /// @dev The canonical Permit2 address.
    /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
    /// Enabled by default. To disable, override `_givePermit2InfiniteAllowance()`.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return type(uint256).max;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        // Code duplication is for zero-cost abstraction if possible.
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                if iszero(eq(caller(), _PERMIT2)) {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, caller())
                    mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                // Compute the allowance slot and load its value.
                mstore(0x20, caller())
                mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                let allowanceSlot := keccak256(0x0c, 0x34)
                let allowance_ := sload(allowanceSlot)
                // If the allowance is not the maximum uint256 value.
                if not(allowance_) {
                    // Revert if the amount to be transferred exceeds the allowance.
                    if gt(amount, allowance_) {
                        mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated allowance.
                    sstore(allowanceSlot, sub(allowance_, amount))
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev If you need a different value, override this function.
    function _versionHash() internal view virtual returns (bytes32 result) {
        result = _DEFAULT_VERSION_HASH;
    }

    /// @dev For inheriting contracts to increment the nonce.
    function _incrementNonce(address owner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            sstore(nonceSlot, add(1, sload(nonceSlot)))
        }
    }

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && value != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0x00, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if not(allowance_) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          PERMIT2                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
    ///
    /// This value should be kept constant after contract initialization,
    /// or else the actual allowance values may not match with the {Approval} events.
    /// For best performance, return a compile-time constant for zero-cost abstraction.
    function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
        return true;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 13 of 19 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 15 of 19 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 16 of 19 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@ensdomains/=lib/v4-periphery/lib/v4-core/node_modules/@ensdomains/",
    "@openzeppelin/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/",
    "@openzeppelin/contracts/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/contracts/",
    "@uniswap/v4-core/=lib/v4-periphery/lib/v4-core/",
    "ds-test/=lib/v4-periphery/lib/v4-core/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/v4-periphery/lib/forge-gas-snapshot/src/",
    "forge-std/=lib/forge-std/src/",
    "hardhat/=lib/v4-periphery/lib/v4-core/node_modules/hardhat/",
    "openzeppelin-contracts/=lib/v4-periphery/lib/v4-core/lib/openzeppelin-contracts/",
    "permit2/=lib/v4-periphery/lib/permit2/",
    "solmate/=lib/v4-periphery/lib/v4-core/lib/solmate/",
    "v4-core/=lib/v4-periphery/lib/v4-core/src/",
    "v4-periphery/=lib/v4-periphery/",
    "@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
    "@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
    "@solady/=lib/liquidity-launcher/lib/solady/",
    "@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
    "btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
    "continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
    "lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
    "liquidity-launcher/=lib/liquidity-launcher/",
    "merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
    "openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
    "optimism/=lib/liquidity-launcher/lib/optimism/",
    "safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
    "solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
    "solady/=lib/liquidity-launcher/lib/solady/src/",
    "test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 800
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"RecipientCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"TotalSupplyCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenAddress","type":"address"}],"name":"TokenCreated","type":"event"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"}],"name":"createToken","outputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getParameters","outputs":[{"components":[{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"components":[{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"website","type":"string"},{"internalType":"string","name":"image","type":"string"}],"internalType":"struct UERC20Metadata","name":"metadata","type":"tuple"}],"internalType":"struct IUERC20Factory.Parameters","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"bytes32","name":"graffiti","type":"bytes32"}],"name":"getUERC20Address","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

6080604052348015600e575f80fd5b50612aa58061001c5f395ff3fe608060405234801561000f575f80fd5b506004361061003f575f3560e01c8063a255e0ad14610043578063a5ea11da14610073578063f752070e14610088575b5f80fd5b61005661005136600461096d565b61009b565b6040516001600160a01b0390911681526020015b60405180910390f35b61007b610358565b60405161006a9190610ab0565b610056610096366004610b5c565b610696565b5f806100a984860186610be8565b90506001600160a01b0386166100d257604051636c38382960e11b815260040160405180910390fd5b865f036100f257604051637ceabcb560e11b815260040160405180910390fd5b6040805161010081018252888152602081018590526001600160a01b038816918101829052336060820181905260ff8b166080830181905260a083018e905260c083018d905260e083018590525f8b815560018890556002805473ffffffffffffffffffffffffffffffffffffffff19169095179094556003805474ffffffffffffffffffffffffffffffffffffffffff19167fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217600160a01b9091021790559060046101c58d82610d2e565b5060c082015160058201906101da9082610d2e565b5060e08201518051600683019081906101f39082610d2e565b50602082015160018201906102089082610d2e565b506040820151600282019061021d9082610d2e565b5050509050505f8a8a8a338760405160200161023d959493929190610de9565b604051602081830303815290604052805190602001209050806040516102629061075d565b8190604051809103905ff590508015801561027f573d5f803e3d5ffd5b505f80805560018190556002805473ffffffffffffffffffffffffffffffffffffffff191690556003805474ffffffffffffffffffffffffffffffffffffffffff19169055909350806102d360048261076a565b6102e0600583015f61076a565b600682015f6102ef828261076a565b6102fc600183015f61076a565b610309600283015f61076a565b50506040516001600160a01b03861681527f2e2b3f61b70d2d131b2a807371103cc98d51adcaa5e9a8f9c32658ad8426e74e9250602001905060405180910390a1505098975050505050505050565b6103606107a4565b60408051610100810182525f8054825260015460208301526002546001600160a01b03908116938301939093526003549283166060830152600160a01b90920460ff1660808201526004805491929160a0840191906103be90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546103ea90610caa565b80156104355780601f1061040c57610100808354040283529160200191610435565b820191905f5260205f20905b81548152906001019060200180831161041857829003601f168201915b5050505050815260200160058201805461044e90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461047a90610caa565b80156104c55780601f1061049c576101008083540402835291602001916104c5565b820191905f5260205f20905b8154815290600101906020018083116104a857829003601f168201915b50505050508152602001600682016040518060600160405290815f820180546104ed90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461051990610caa565b80156105645780601f1061053b57610100808354040283529160200191610564565b820191905f5260205f20905b81548152906001019060200180831161054757829003601f168201915b5050505050815260200160018201805461057d90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546105a990610caa565b80156105f45780601f106105cb576101008083540402835291602001916105f4565b820191905f5260205f20905b8154815290600101906020018083116105d757829003601f168201915b5050505050815260200160028201805461060d90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461063990610caa565b80156106845780601f1061065b57610100808354040283529160200191610684565b820191905f5260205f20905b81548152906001019060200180831161066757829003601f168201915b50505050508152505081525050905090565b5f8086868686866040516020016106b1959493929190610de9565b6040516020818303038152906040528051906020012090505f604051806020016106da9061075d565b601f1982820381018352601f9091011660408190526106fc9190602001610e37565b60405160208183030381529060405280519060200120905061071f82823061072b565b98975050505050505050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b611c2280610e4e83390190565b50805461077690610caa565b5f825580601f10610785575050565b601f0160209004905f5260205f20908101906107a1919061081d565b50565b6040518061010001604052805f81526020015f80191681526020015f6001600160a01b031681526020015f6001600160a01b031681526020015f60ff168152602001606081526020016060815260200161081860405180606001604052806060815260200160608152602001606081525090565b905290565b5b80821115610831575f815560010161081e565b5090565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561086c5761086c610835565b60405290565b5f82601f830112610881575f80fd5b813567ffffffffffffffff81111561089b5761089b610835565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156108ca576108ca610835565b6040528181528382016020018510156108e1575f80fd5b816020850160208301375f918101602001919091529392505050565b803560ff8116811461090d575f80fd5b919050565b80356001600160a01b038116811461090d575f80fd5b5f8083601f840112610938575f80fd5b50813567ffffffffffffffff81111561094f575f80fd5b602083019150836020828501011115610966575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610984575f80fd5b883567ffffffffffffffff81111561099a575f80fd5b6109a68b828c01610872565b985050602089013567ffffffffffffffff8111156109c2575f80fd5b6109ce8b828c01610872565b9750506109dd60408a016108fd565b9550606089013594506109f260808a01610912565b935060a089013567ffffffffffffffff811115610a0d575f80fd5b610a198b828c01610928565b999c989b50969995989497949560c00135949350505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f815160608452610a746060850182610a32565b905060208301518482036020860152610a8d8282610a32565b91505060408301518482036040860152610aa78282610a32565b95945050505050565b6020815281516020820152602082015160408201525f6040830151610ae060608401826001600160a01b03169052565b5060608301516001600160a01b038116608084015250608083015160ff811660a08401525060a083015161010060c0840152610b20610120840182610a32565b905060c0840151601f198483030160e0850152610b3d8282610a32565b91505060e0840151601f1984830301610100850152610aa78282610a60565b5f805f805f60a08688031215610b70575f80fd5b853567ffffffffffffffff811115610b86575f80fd5b610b9288828901610872565b955050602086013567ffffffffffffffff811115610bae575f80fd5b610bba88828901610872565b945050610bc9604087016108fd565b9250610bd760608701610912565b949793965091946080013592915050565b5f60208284031215610bf8575f80fd5b813567ffffffffffffffff811115610c0e575f80fd5b820160608185031215610c1f575f80fd5b610c27610849565b813567ffffffffffffffff811115610c3d575f80fd5b610c4986828501610872565b825250602082013567ffffffffffffffff811115610c65575f80fd5b610c7186828501610872565b602083015250604082013567ffffffffffffffff811115610c90575f80fd5b610c9c86828501610872565b604083015250949350505050565b600181811c90821680610cbe57607f821691505b602082108103610cdc57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610d2957805f5260205f20601f840160051c81016020851015610d075750805b601f840160051c820191505b81811015610d26575f8155600101610d13565b50505b505050565b815167ffffffffffffffff811115610d4857610d48610835565b610d5c81610d568454610caa565b84610ce2565b6020601f821160018114610d8e575f8315610d775750848201515b5f19600385901b1c1916600184901b178455610d26565b5f84815260208120601f198516915b82811015610dbd5787850151825560209485019460019092019101610d9d565b5084821015610dda57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60a081525f610dfb60a0830188610a32565b8281036020840152610e0d8188610a32565b60ff96909616604084015250506001600160a01b0392909216606083015260809091015292915050565b5f82518060208501845e5f92019182525091905056fe610100604052348015610010575f80fd5b505f336001600160a01b031663a5ea11da6040518163ffffffff1660e01b81526004015f60405180830381865afa15801561004d573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610074919081019061035f565b90508060a001515f908161008891906104e8565b505f60405161009791906105a2565b60405190819003902060805260c08101516001906100b590826104e8565b50608081015160ff1660e090815260608201516001600160a01b031660c052602082015160a052810151805160029081906100f090826104e8565b506020820151600182019061010590826104e8565b506040820151600282019061011a90826104e8565b5050506040810151815161012e9190610134565b50610613565b6805345cdf77eb68f44c54818101818110156101575763e5cfe9575f526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52815f526020600c208181540181555080602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b505050565b634e487b7160e01b5f52604160045260245ffd5b60405161010081016001600160401b03811182821017156101ec576101ec6101b5565b60405290565b80516001600160a01b0381168114610208575f80fd5b919050565b805160ff81168114610208575f80fd5b5f82601f83011261022c575f80fd5b81516001600160401b03811115610245576102456101b5565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610273576102736101b5565b60405281815283820160200185101561028a575f80fd5b8160208501602083015e5f918101602001919091529392505050565b5f606082840312156102b6575f80fd5b604051606081016001600160401b03811182821017156102d8576102d86101b5565b604052825190915081906001600160401b038111156102f5575f80fd5b6103018582860161021d565b82525060208301516001600160401b0381111561031c575f80fd5b6103288582860161021d565b60208301525060408301516001600160401b03811115610346575f80fd5b6103528582860161021d565b6040830152505092915050565b5f6020828403121561036f575f80fd5b81516001600160401b03811115610384575f80fd5b82016101008185031215610396575f80fd5b61039e6101c9565b81518152602080830151908201526103b8604083016101f2565b60408201526103c9606083016101f2565b60608201526103da6080830161020d565b608082015260a08201516001600160401b038111156103f7575f80fd5b6104038682850161021d565b60a08301525060c08201516001600160401b03811115610421575f80fd5b61042d8682850161021d565b60c08301525060e08201516001600160401b0381111561044b575f80fd5b610457868285016102a6565b60e083015250949350505050565b600181811c9082168061047957607f821691505b60208210810361049757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156101b057805f5260205f20601f840160051c810160208510156104c25750805b601f840160051c820191505b818110156104e1575f81556001016104ce565b5050505050565b81516001600160401b03811115610501576105016101b5565b6105158161050f8454610465565b8461049d565b6020601f821160018114610547575f83156105305750848201515b5f19600385901b1c1916600184901b1784556104e1565b5f84815260208120601f198516915b828110156105765787850151825560209485019460019092019101610556565b508482101561059357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f8083546105af81610465565b6001821680156105c657600181146105db57610608565b60ff1983168652811515820286019350610608565b865f5260205f205f5b83811015610600578154888201526001909101906020016105e4565b505081860193505b509195945050505050565b60805160a05160c05160e0516115d561064d5f395f6101dc01525f61014601525f6102bf01525f818161051301526109dd01526115d55ff3fe608060405234801561000f575f80fd5b5060043610610115575f3560e01c8063392f37e9116100ad57806395d89b411161007d578063d505accf11610063578063d505accf14610292578063dd62ed3e146102a7578063f56a499f146102ba575f80fd5b806395d89b4114610277578063a9059cbb1461027f575f80fd5b8063392f37e91461020e5780633c130d901461022557806370a082311461022d5780637ecebe0014610252575f80fd5b806318160ddd116100e857806318160ddd146101a857806323b872dd146101c2578063313ce567146101d55780633644e51514610206575f80fd5b806301ffc9a71461011957806302d05d3f1461014157806306fdde0314610180578063095ea7b314610195575b5f80fd5b61012c610127366004611168565b6102e1565b60405190151581526020015b60405180910390f35b6101687f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610138565b610188610332565b60405161013891906111bd565b61012c6101a33660046111ea565b6103c1565b6805345cdf77eb68f44c545b604051908152602001610138565b61012c6101d0366004611212565b610440565b60405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610138565b6101b4610510565b6102166105b2565b6040516101389392919061124c565b61018861075a565b6101b461023b36600461128e565b6387a211a2600c9081525f91909152602090205490565b6101b461026036600461128e565b6338377508600c9081525f91909152602090205490565b610188610925565b61012c61028d3660046111ea565b610934565b6102a56102a03660046112a7565b6109ab565b005b6101b46102b5366004611314565b610b96565b6101b47f000000000000000000000000000000000000000000000000000000000000000081565b5f6001600160e01b031982166301ffc9a760e01b148061031157506001600160e01b031982166336372b0760e01b145b8061032c57506001600160e01b03198216634ec7fbed60e11b145b92915050565b60605f805461034090611345565b80601f016020809104026020016040519081016040528092919081815260200182805461036c90611345565b80156103b75780601f1061038e576101008083540402835291602001916103b7565b820191905f5260205f20905b81548152906001019060200180831161039a57829003601f168201915b5050505050905090565b5f6001600160a01b0383166e22d473030f116ddee9f6b43ac78ba318821915176103f257633f68539a5f526004601cfd5b82602052637f5e9f20600c52335f52816034600c2055815f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa350600192915050565b5f8360601b6e22d473030f116ddee9f6b43ac78ba333146104955733602052637f5e9f208117600c526034600c208054801915610492578085111561048c576313be252b5f526004601cfd5b84810382555b50505b6387a211a28117600c526020600c208054808511156104bb5763f4d678b85f526004601cfd5b84810382555050835f526020600c208381540181555082602052600c5160601c8160601c7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a3505060015b9392505050565b5f7f0000000000000000000000000000000000000000000000000000000000000000806105495761053f610332565b8051906020012090505b604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f815260208101929092527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc69082015246606082015230608082015260a09020919050565b6002805481906105c190611345565b80601f01602080910402602001604051908101604052809291908181526020018280546105ed90611345565b80156106385780601f1061060f57610100808354040283529160200191610638565b820191905f5260205f20905b81548152906001019060200180831161061b57829003601f168201915b50505050509080600101805461064d90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461067990611345565b80156106c45780601f1061069b576101008083540402835291602001916106c4565b820191905f5260205f20905b8154815290600101906020018083116106a757829003601f168201915b5050505050908060020180546106d990611345565b80601f016020809104026020016040519081016040528092919081815260200182805461070590611345565b80156107505780601f1061072757610100808354040283529160200191610750565b820191905f5260205f20905b81548152906001019060200180831161073357829003601f168201915b5050505050905083565b606061092060026040518060600160405290815f8201805461077b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546107a790611345565b80156107f25780601f106107c9576101008083540402835291602001916107f2565b820191905f5260205f20905b8154815290600101906020018083116107d557829003601f168201915b5050505050815260200160018201805461080b90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461083790611345565b80156108825780601f1061085957610100808354040283529160200191610882565b820191905f5260205f20905b81548152906001019060200180831161086557829003601f168201915b5050505050815260200160028201805461089b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546108c790611345565b80156109125780601f106108e957610100808354040283529160200191610912565b820191905f5260205f20905b8154815290600101906020018083116108f557829003601f168201915b505050505081525050610bda565b905090565b60606001805461034090611345565b5f6387a211a2600c52335f526020600c2080548084111561095c5763f4d678b85f526004601cfd5b83810382555050825f526020600c208281540181555081602052600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a350600192915050565b6001600160a01b0386166e22d473030f116ddee9f6b43ac78ba318851915176109db57633f68539a5f526004601cfd5b7f000000000000000000000000000000000000000000000000000000000000000080610a1357610a09610332565b8051906020012090505b7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc642861015610a4957631a15a3cc5f526004601cfd5b6040518960601b60601c99508860601b60601c985065383775081901600e52895f526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835284602084015283604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528b60208401528a60408401528960608401528060808401528860a084015260c08320604e526042602c205f528760ff16602052866040528560605260208060805f60015afa8c3d5114610b315763ddafbaef5f526004601cfd5b019055777f5e9f20000000000000000000000000000000000000000089176040526034602c20889055888a7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250505f60605250505050505050565b5f6e22d473030f116ddee9f6b43ac78ba2196001600160a01b03831601610bbf57505f1961032c565b50602052637f5e9f20600c9081525f91909152603490205490565b6060610bed610be883610c13565b610d75565b604051602001610bfd9190611394565b6040516020818303038152906040529050919050565b60605f604051602001610c2d90607b60f81b815260010190565b60408051601f198184030181529190528351519091505f9015610c7e5781610c57855f0151610d9b565b604051602001610c689291906113c5565b6040516020818303038152906040529150600190505b60208401515115610ce7578015610cb25781604051602001610ca09190611413565b60405160208183030381529060405291505b81610cc08560200151610d9b565b604051602001610cd1929190611430565b6040516020818303038152906040529150600190505b60408401515115610d4c578015610d1b5781604051602001610d099190611413565b60405160208183030381529060405291505b81610d298560400151610d9b565b604051602001610d3a92919061146b565b60405160208183030381529060405291505b81604051602001610d5d91906114a6565b60405160208183030381529060405292505050919050565b606061032c82604051806060016040528060408152602001611560604091396001610fed565b805160609082905f90610daf9060026114d6565b67ffffffffffffffff811115610dc757610dc76114ed565b6040519080825280601f01601f191660200182016040528015610df1576020820181803683370190505b5090505f805b8351811015610fd6575f610e0e8583016020015190565b90506b100000000000000400003700600160f883901c1b1615610f9857601760fa1b8484610e3b81611501565b955081518110610e4d57610e4d611519565b60200101906001600160f81b03191690815f1a9053506001600160f81b03198116600160fb1b03610eb557603160f91b8484610e8881611501565b955081518110610e9a57610e9a611519565b60200101906001600160f81b03191690815f1a905350610fcd565b6001600160f81b03198116600960f81b03610eda57601d60fa1b8484610e8881611501565b6001600160f81b03198116600560f91b03610eff57603760f91b8484610e8881611501565b6001600160f81b03198116600360fa1b03610f2457603360f91b8484610e8881611501565b6001600160f81b03198116600d60f81b03610f4957603960f91b8484610e8881611501565b6001600160f81b03198116601760fa1b03610f6e57601760fa1b8484610e8881611501565b6001600160f81b03198116601160f91b03610f9357601160f91b8484610e8881611501565b610fcd565b808484610fa481611501565b955081518110610fb657610fb6611519565b60200101906001600160f81b03191690815f1a9053505b50600101610df7565b50808252603f01601f191681016040529392505050565b606083515f0361100b575060408051602081019091525f8152610509565b5f8261103b5760038551600461102191906114d6565b61102c90600261152d565b6110369190611540565b611060565b60038551600261104b919061152d565b6110559190611540565b6110609060046114d6565b90505f8167ffffffffffffffff81111561107c5761107c6114ed565b6040519080825280601f01601f1916602001820160405280156110a6576020820181803683370190505b509050600185016020820187885189016020810180515f82525b8284101561111b576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f81168701518653506001850194506110c0565b90525050851561115c5760038851066001811461113f57600281146111525761115a565b603d6001830353603d600283035361115a565b603d60018303535b505b50909695505050505050565b5f60208284031215611178575f80fd5b81356001600160e01b031981168114610509575f80fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610509602083018461118f565b80356001600160a01b03811681146111e5575f80fd5b919050565b5f80604083850312156111fb575f80fd5b611204836111cf565b946020939093013593505050565b5f805f60608486031215611224575f80fd5b61122d846111cf565b925061123b602085016111cf565b929592945050506040919091013590565b606081525f61125e606083018661118f565b8281036020840152611270818661118f565b90508281036040840152611284818561118f565b9695505050505050565b5f6020828403121561129e575f80fd5b610509826111cf565b5f805f805f805f60e0888a0312156112bd575f80fd5b6112c6886111cf565b96506112d4602089016111cf565b95506040880135945060608801359350608088013560ff811681146112f7575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611325575f80fd5b61132e836111cf565b915061133c602084016111cf565b90509250929050565b600181811c9082168061135957607f821691505b60208210810361137757634e487b7160e01b5f52602260045260245ffd5b50919050565b5f81518060208401855e5f93019283525090919050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610509601d83018461137d565b5f6113d0828561137d565b7f226465736372697074696f6e223a2200000000000000000000000000000000008152611400600f82018561137d565b601160f91b815260010195945050505050565b5f61141e828461137d565b61016160f51b81526002019392505050565b5f61143b828561137d565b7f2277656273697465223a220000000000000000000000000000000000000000008152611400600b82018561137d565b5f611476828561137d565b7f22696d616765223a2200000000000000000000000000000000000000000000008152611400600982018561137d565b5f6114b1828461137d565b607d60f81b81526001019392505050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761032c5761032c6114c2565b634e487b7160e01b5f52604160045260245ffd5b5f60018201611512576115126114c2565b5060010190565b634e487b7160e01b5f52603260045260245ffd5b8082018082111561032c5761032c6114c2565b5f8261155a57634e487b7160e01b5f52601260045260245ffd5b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa26469706673582212200c37574c8afe8cc98a769791072d75b049417da3ba0da8d46af9ba3b6dcac4e764736f6c634300081a0033a2646970667358221220d3d06cc3ba5061994eec84a289f36e841b8b697cea37c3856fe1f8d5ec274b6564736f6c634300081a0033

Deployed Bytecode

0x608060405234801561000f575f80fd5b506004361061003f575f3560e01c8063a255e0ad14610043578063a5ea11da14610073578063f752070e14610088575b5f80fd5b61005661005136600461096d565b61009b565b6040516001600160a01b0390911681526020015b60405180910390f35b61007b610358565b60405161006a9190610ab0565b610056610096366004610b5c565b610696565b5f806100a984860186610be8565b90506001600160a01b0386166100d257604051636c38382960e11b815260040160405180910390fd5b865f036100f257604051637ceabcb560e11b815260040160405180910390fd5b6040805161010081018252888152602081018590526001600160a01b038816918101829052336060820181905260ff8b166080830181905260a083018e905260c083018d905260e083018590525f8b815560018890556002805473ffffffffffffffffffffffffffffffffffffffff19169095179094556003805474ffffffffffffffffffffffffffffffffffffffffff19167fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217600160a01b9091021790559060046101c58d82610d2e565b5060c082015160058201906101da9082610d2e565b5060e08201518051600683019081906101f39082610d2e565b50602082015160018201906102089082610d2e565b506040820151600282019061021d9082610d2e565b5050509050505f8a8a8a338760405160200161023d959493929190610de9565b604051602081830303815290604052805190602001209050806040516102629061075d565b8190604051809103905ff590508015801561027f573d5f803e3d5ffd5b505f80805560018190556002805473ffffffffffffffffffffffffffffffffffffffff191690556003805474ffffffffffffffffffffffffffffffffffffffffff19169055909350806102d360048261076a565b6102e0600583015f61076a565b600682015f6102ef828261076a565b6102fc600183015f61076a565b610309600283015f61076a565b50506040516001600160a01b03861681527f2e2b3f61b70d2d131b2a807371103cc98d51adcaa5e9a8f9c32658ad8426e74e9250602001905060405180910390a1505098975050505050505050565b6103606107a4565b60408051610100810182525f8054825260015460208301526002546001600160a01b03908116938301939093526003549283166060830152600160a01b90920460ff1660808201526004805491929160a0840191906103be90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546103ea90610caa565b80156104355780601f1061040c57610100808354040283529160200191610435565b820191905f5260205f20905b81548152906001019060200180831161041857829003601f168201915b5050505050815260200160058201805461044e90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461047a90610caa565b80156104c55780601f1061049c576101008083540402835291602001916104c5565b820191905f5260205f20905b8154815290600101906020018083116104a857829003601f168201915b50505050508152602001600682016040518060600160405290815f820180546104ed90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461051990610caa565b80156105645780601f1061053b57610100808354040283529160200191610564565b820191905f5260205f20905b81548152906001019060200180831161054757829003601f168201915b5050505050815260200160018201805461057d90610caa565b80601f01602080910402602001604051908101604052809291908181526020018280546105a990610caa565b80156105f45780601f106105cb576101008083540402835291602001916105f4565b820191905f5260205f20905b8154815290600101906020018083116105d757829003601f168201915b5050505050815260200160028201805461060d90610caa565b80601f016020809104026020016040519081016040528092919081815260200182805461063990610caa565b80156106845780601f1061065b57610100808354040283529160200191610684565b820191905f5260205f20905b81548152906001019060200180831161066757829003601f168201915b50505050508152505081525050905090565b5f8086868686866040516020016106b1959493929190610de9565b6040516020818303038152906040528051906020012090505f604051806020016106da9061075d565b601f1982820381018352601f9091011660408190526106fc9190602001610e37565b60405160208183030381529060405280519060200120905061071f82823061072b565b98975050505050505050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b611c2280610e4e83390190565b50805461077690610caa565b5f825580601f10610785575050565b601f0160209004905f5260205f20908101906107a1919061081d565b50565b6040518061010001604052805f81526020015f80191681526020015f6001600160a01b031681526020015f6001600160a01b031681526020015f60ff168152602001606081526020016060815260200161081860405180606001604052806060815260200160608152602001606081525090565b905290565b5b80821115610831575f815560010161081e565b5090565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561086c5761086c610835565b60405290565b5f82601f830112610881575f80fd5b813567ffffffffffffffff81111561089b5761089b610835565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156108ca576108ca610835565b6040528181528382016020018510156108e1575f80fd5b816020850160208301375f918101602001919091529392505050565b803560ff8116811461090d575f80fd5b919050565b80356001600160a01b038116811461090d575f80fd5b5f8083601f840112610938575f80fd5b50813567ffffffffffffffff81111561094f575f80fd5b602083019150836020828501011115610966575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610984575f80fd5b883567ffffffffffffffff81111561099a575f80fd5b6109a68b828c01610872565b985050602089013567ffffffffffffffff8111156109c2575f80fd5b6109ce8b828c01610872565b9750506109dd60408a016108fd565b9550606089013594506109f260808a01610912565b935060a089013567ffffffffffffffff811115610a0d575f80fd5b610a198b828c01610928565b999c989b50969995989497949560c00135949350505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f815160608452610a746060850182610a32565b905060208301518482036020860152610a8d8282610a32565b91505060408301518482036040860152610aa78282610a32565b95945050505050565b6020815281516020820152602082015160408201525f6040830151610ae060608401826001600160a01b03169052565b5060608301516001600160a01b038116608084015250608083015160ff811660a08401525060a083015161010060c0840152610b20610120840182610a32565b905060c0840151601f198483030160e0850152610b3d8282610a32565b91505060e0840151601f1984830301610100850152610aa78282610a60565b5f805f805f60a08688031215610b70575f80fd5b853567ffffffffffffffff811115610b86575f80fd5b610b9288828901610872565b955050602086013567ffffffffffffffff811115610bae575f80fd5b610bba88828901610872565b945050610bc9604087016108fd565b9250610bd760608701610912565b949793965091946080013592915050565b5f60208284031215610bf8575f80fd5b813567ffffffffffffffff811115610c0e575f80fd5b820160608185031215610c1f575f80fd5b610c27610849565b813567ffffffffffffffff811115610c3d575f80fd5b610c4986828501610872565b825250602082013567ffffffffffffffff811115610c65575f80fd5b610c7186828501610872565b602083015250604082013567ffffffffffffffff811115610c90575f80fd5b610c9c86828501610872565b604083015250949350505050565b600181811c90821680610cbe57607f821691505b602082108103610cdc57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610d2957805f5260205f20601f840160051c81016020851015610d075750805b601f840160051c820191505b81811015610d26575f8155600101610d13565b50505b505050565b815167ffffffffffffffff811115610d4857610d48610835565b610d5c81610d568454610caa565b84610ce2565b6020601f821160018114610d8e575f8315610d775750848201515b5f19600385901b1c1916600184901b178455610d26565b5f84815260208120601f198516915b82811015610dbd5787850151825560209485019460019092019101610d9d565b5084821015610dda57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60a081525f610dfb60a0830188610a32565b8281036020840152610e0d8188610a32565b60ff96909616604084015250506001600160a01b0392909216606083015260809091015292915050565b5f82518060208501845e5f92019182525091905056fe610100604052348015610010575f80fd5b505f336001600160a01b031663a5ea11da6040518163ffffffff1660e01b81526004015f60405180830381865afa15801561004d573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610074919081019061035f565b90508060a001515f908161008891906104e8565b505f60405161009791906105a2565b60405190819003902060805260c08101516001906100b590826104e8565b50608081015160ff1660e090815260608201516001600160a01b031660c052602082015160a052810151805160029081906100f090826104e8565b506020820151600182019061010590826104e8565b506040820151600282019061011a90826104e8565b5050506040810151815161012e9190610134565b50610613565b6805345cdf77eb68f44c54818101818110156101575763e5cfe9575f526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52815f526020600c208181540181555080602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b505050565b634e487b7160e01b5f52604160045260245ffd5b60405161010081016001600160401b03811182821017156101ec576101ec6101b5565b60405290565b80516001600160a01b0381168114610208575f80fd5b919050565b805160ff81168114610208575f80fd5b5f82601f83011261022c575f80fd5b81516001600160401b03811115610245576102456101b5565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610273576102736101b5565b60405281815283820160200185101561028a575f80fd5b8160208501602083015e5f918101602001919091529392505050565b5f606082840312156102b6575f80fd5b604051606081016001600160401b03811182821017156102d8576102d86101b5565b604052825190915081906001600160401b038111156102f5575f80fd5b6103018582860161021d565b82525060208301516001600160401b0381111561031c575f80fd5b6103288582860161021d565b60208301525060408301516001600160401b03811115610346575f80fd5b6103528582860161021d565b6040830152505092915050565b5f6020828403121561036f575f80fd5b81516001600160401b03811115610384575f80fd5b82016101008185031215610396575f80fd5b61039e6101c9565b81518152602080830151908201526103b8604083016101f2565b60408201526103c9606083016101f2565b60608201526103da6080830161020d565b608082015260a08201516001600160401b038111156103f7575f80fd5b6104038682850161021d565b60a08301525060c08201516001600160401b03811115610421575f80fd5b61042d8682850161021d565b60c08301525060e08201516001600160401b0381111561044b575f80fd5b610457868285016102a6565b60e083015250949350505050565b600181811c9082168061047957607f821691505b60208210810361049757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156101b057805f5260205f20601f840160051c810160208510156104c25750805b601f840160051c820191505b818110156104e1575f81556001016104ce565b5050505050565b81516001600160401b03811115610501576105016101b5565b6105158161050f8454610465565b8461049d565b6020601f821160018114610547575f83156105305750848201515b5f19600385901b1c1916600184901b1784556104e1565b5f84815260208120601f198516915b828110156105765787850151825560209485019460019092019101610556565b508482101561059357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f8083546105af81610465565b6001821680156105c657600181146105db57610608565b60ff1983168652811515820286019350610608565b865f5260205f205f5b83811015610600578154888201526001909101906020016105e4565b505081860193505b509195945050505050565b60805160a05160c05160e0516115d561064d5f395f6101dc01525f61014601525f6102bf01525f818161051301526109dd01526115d55ff3fe608060405234801561000f575f80fd5b5060043610610115575f3560e01c8063392f37e9116100ad57806395d89b411161007d578063d505accf11610063578063d505accf14610292578063dd62ed3e146102a7578063f56a499f146102ba575f80fd5b806395d89b4114610277578063a9059cbb1461027f575f80fd5b8063392f37e91461020e5780633c130d901461022557806370a082311461022d5780637ecebe0014610252575f80fd5b806318160ddd116100e857806318160ddd146101a857806323b872dd146101c2578063313ce567146101d55780633644e51514610206575f80fd5b806301ffc9a71461011957806302d05d3f1461014157806306fdde0314610180578063095ea7b314610195575b5f80fd5b61012c610127366004611168565b6102e1565b60405190151581526020015b60405180910390f35b6101687f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610138565b610188610332565b60405161013891906111bd565b61012c6101a33660046111ea565b6103c1565b6805345cdf77eb68f44c545b604051908152602001610138565b61012c6101d0366004611212565b610440565b60405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610138565b6101b4610510565b6102166105b2565b6040516101389392919061124c565b61018861075a565b6101b461023b36600461128e565b6387a211a2600c9081525f91909152602090205490565b6101b461026036600461128e565b6338377508600c9081525f91909152602090205490565b610188610925565b61012c61028d3660046111ea565b610934565b6102a56102a03660046112a7565b6109ab565b005b6101b46102b5366004611314565b610b96565b6101b47f000000000000000000000000000000000000000000000000000000000000000081565b5f6001600160e01b031982166301ffc9a760e01b148061031157506001600160e01b031982166336372b0760e01b145b8061032c57506001600160e01b03198216634ec7fbed60e11b145b92915050565b60605f805461034090611345565b80601f016020809104026020016040519081016040528092919081815260200182805461036c90611345565b80156103b75780601f1061038e576101008083540402835291602001916103b7565b820191905f5260205f20905b81548152906001019060200180831161039a57829003601f168201915b5050505050905090565b5f6001600160a01b0383166e22d473030f116ddee9f6b43ac78ba318821915176103f257633f68539a5f526004601cfd5b82602052637f5e9f20600c52335f52816034600c2055815f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa350600192915050565b5f8360601b6e22d473030f116ddee9f6b43ac78ba333146104955733602052637f5e9f208117600c526034600c208054801915610492578085111561048c576313be252b5f526004601cfd5b84810382555b50505b6387a211a28117600c526020600c208054808511156104bb5763f4d678b85f526004601cfd5b84810382555050835f526020600c208381540181555082602052600c5160601c8160601c7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a3505060015b9392505050565b5f7f0000000000000000000000000000000000000000000000000000000000000000806105495761053f610332565b8051906020012090505b604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f815260208101929092527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc69082015246606082015230608082015260a09020919050565b6002805481906105c190611345565b80601f01602080910402602001604051908101604052809291908181526020018280546105ed90611345565b80156106385780601f1061060f57610100808354040283529160200191610638565b820191905f5260205f20905b81548152906001019060200180831161061b57829003601f168201915b50505050509080600101805461064d90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461067990611345565b80156106c45780601f1061069b576101008083540402835291602001916106c4565b820191905f5260205f20905b8154815290600101906020018083116106a757829003601f168201915b5050505050908060020180546106d990611345565b80601f016020809104026020016040519081016040528092919081815260200182805461070590611345565b80156107505780601f1061072757610100808354040283529160200191610750565b820191905f5260205f20905b81548152906001019060200180831161073357829003601f168201915b5050505050905083565b606061092060026040518060600160405290815f8201805461077b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546107a790611345565b80156107f25780601f106107c9576101008083540402835291602001916107f2565b820191905f5260205f20905b8154815290600101906020018083116107d557829003601f168201915b5050505050815260200160018201805461080b90611345565b80601f016020809104026020016040519081016040528092919081815260200182805461083790611345565b80156108825780601f1061085957610100808354040283529160200191610882565b820191905f5260205f20905b81548152906001019060200180831161086557829003601f168201915b5050505050815260200160028201805461089b90611345565b80601f01602080910402602001604051908101604052809291908181526020018280546108c790611345565b80156109125780601f106108e957610100808354040283529160200191610912565b820191905f5260205f20905b8154815290600101906020018083116108f557829003601f168201915b505050505081525050610bda565b905090565b60606001805461034090611345565b5f6387a211a2600c52335f526020600c2080548084111561095c5763f4d678b85f526004601cfd5b83810382555050825f526020600c208281540181555081602052600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a350600192915050565b6001600160a01b0386166e22d473030f116ddee9f6b43ac78ba318851915176109db57633f68539a5f526004601cfd5b7f000000000000000000000000000000000000000000000000000000000000000080610a1357610a09610332565b8051906020012090505b7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc642861015610a4957631a15a3cc5f526004601cfd5b6040518960601b60601c99508860601b60601c985065383775081901600e52895f526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835284602084015283604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528b60208401528a60408401528960608401528060808401528860a084015260c08320604e526042602c205f528760ff16602052866040528560605260208060805f60015afa8c3d5114610b315763ddafbaef5f526004601cfd5b019055777f5e9f20000000000000000000000000000000000000000089176040526034602c20889055888a7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250505f60605250505050505050565b5f6e22d473030f116ddee9f6b43ac78ba2196001600160a01b03831601610bbf57505f1961032c565b50602052637f5e9f20600c9081525f91909152603490205490565b6060610bed610be883610c13565b610d75565b604051602001610bfd9190611394565b6040516020818303038152906040529050919050565b60605f604051602001610c2d90607b60f81b815260010190565b60408051601f198184030181529190528351519091505f9015610c7e5781610c57855f0151610d9b565b604051602001610c689291906113c5565b6040516020818303038152906040529150600190505b60208401515115610ce7578015610cb25781604051602001610ca09190611413565b60405160208183030381529060405291505b81610cc08560200151610d9b565b604051602001610cd1929190611430565b6040516020818303038152906040529150600190505b60408401515115610d4c578015610d1b5781604051602001610d099190611413565b60405160208183030381529060405291505b81610d298560400151610d9b565b604051602001610d3a92919061146b565b60405160208183030381529060405291505b81604051602001610d5d91906114a6565b60405160208183030381529060405292505050919050565b606061032c82604051806060016040528060408152602001611560604091396001610fed565b805160609082905f90610daf9060026114d6565b67ffffffffffffffff811115610dc757610dc76114ed565b6040519080825280601f01601f191660200182016040528015610df1576020820181803683370190505b5090505f805b8351811015610fd6575f610e0e8583016020015190565b90506b100000000000000400003700600160f883901c1b1615610f9857601760fa1b8484610e3b81611501565b955081518110610e4d57610e4d611519565b60200101906001600160f81b03191690815f1a9053506001600160f81b03198116600160fb1b03610eb557603160f91b8484610e8881611501565b955081518110610e9a57610e9a611519565b60200101906001600160f81b03191690815f1a905350610fcd565b6001600160f81b03198116600960f81b03610eda57601d60fa1b8484610e8881611501565b6001600160f81b03198116600560f91b03610eff57603760f91b8484610e8881611501565b6001600160f81b03198116600360fa1b03610f2457603360f91b8484610e8881611501565b6001600160f81b03198116600d60f81b03610f4957603960f91b8484610e8881611501565b6001600160f81b03198116601760fa1b03610f6e57601760fa1b8484610e8881611501565b6001600160f81b03198116601160f91b03610f9357601160f91b8484610e8881611501565b610fcd565b808484610fa481611501565b955081518110610fb657610fb6611519565b60200101906001600160f81b03191690815f1a9053505b50600101610df7565b50808252603f01601f191681016040529392505050565b606083515f0361100b575060408051602081019091525f8152610509565b5f8261103b5760038551600461102191906114d6565b61102c90600261152d565b6110369190611540565b611060565b60038551600261104b919061152d565b6110559190611540565b6110609060046114d6565b90505f8167ffffffffffffffff81111561107c5761107c6114ed565b6040519080825280601f01601f1916602001820160405280156110a6576020820181803683370190505b509050600185016020820187885189016020810180515f82525b8284101561111b576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f81168701518653506001850194506110c0565b90525050851561115c5760038851066001811461113f57600281146111525761115a565b603d6001830353603d600283035361115a565b603d60018303535b505b50909695505050505050565b5f60208284031215611178575f80fd5b81356001600160e01b031981168114610509575f80fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610509602083018461118f565b80356001600160a01b03811681146111e5575f80fd5b919050565b5f80604083850312156111fb575f80fd5b611204836111cf565b946020939093013593505050565b5f805f60608486031215611224575f80fd5b61122d846111cf565b925061123b602085016111cf565b929592945050506040919091013590565b606081525f61125e606083018661118f565b8281036020840152611270818661118f565b90508281036040840152611284818561118f565b9695505050505050565b5f6020828403121561129e575f80fd5b610509826111cf565b5f805f805f805f60e0888a0312156112bd575f80fd5b6112c6886111cf565b96506112d4602089016111cf565b95506040880135945060608801359350608088013560ff811681146112f7575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611325575f80fd5b61132e836111cf565b915061133c602084016111cf565b90509250929050565b600181811c9082168061135957607f821691505b60208210810361137757634e487b7160e01b5f52602260045260245ffd5b50919050565b5f81518060208401855e5f93019283525090919050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610509601d83018461137d565b5f6113d0828561137d565b7f226465736372697074696f6e223a2200000000000000000000000000000000008152611400600f82018561137d565b601160f91b815260010195945050505050565b5f61141e828461137d565b61016160f51b81526002019392505050565b5f61143b828561137d565b7f2277656273697465223a220000000000000000000000000000000000000000008152611400600b82018561137d565b5f611476828561137d565b7f22696d616765223a2200000000000000000000000000000000000000000000008152611400600982018561137d565b5f6114b1828461137d565b607d60f81b81526001019392505050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761032c5761032c6114c2565b634e487b7160e01b5f52604160045260245ffd5b5f60018201611512576115126114c2565b5060010190565b634e487b7160e01b5f52603260045260245ffd5b8082018082111561032c5761032c6114c2565b5f8261155a57634e487b7160e01b5f52601260045260245ffd5b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa26469706673582212200c37574c8afe8cc98a769791072d75b049417da3ba0da8d46af9ba3b6dcac4e764736f6c634300081a0033a2646970667358221220d3d06cc3ba5061994eec84a289f36e841b8b697cea37c3856fe1f8d5ec274b6564736f6c634300081a0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.