ETH Price: $2,895.40 (-1.37%)

Contract

0xAa870Da2a9F611A3A53d0D2AEe5664B3700a59c9

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

1 Internal Transaction and > 10 Token Transfers found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
208729022025-07-04 9:27:41205 days ago1751621261  Contract Creation0 ETH

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ParaswapAdapter

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 999999 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {IParaswapAdapter, Offsets, MarketParams} from "../interfaces/IParaswapAdapter.sol";
import {IAugustusRegistry} from "../interfaces/IAugustusRegistry.sol";
import {CoreAdapter, ErrorsLib, IERC20, SafeERC20, UtilsLib} from "./CoreAdapter.sol";
import {BytesLib} from "../libraries/BytesLib.sol";
import {Math} from "../../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";
import {IMorpho, MorphoBalancesLib} from "../../lib/morpho-blue/src/libraries/periphery/MorphoBalancesLib.sol";

/// @custom:security-contact [email protected]
/// @notice Adapter for trading with Paraswap.
contract ParaswapAdapter is CoreAdapter, IParaswapAdapter {
    using Math for uint256;
    using BytesLib for bytes;

    /* IMMUTABLES */

    /// @notice The address of the Augustus registry.
    IAugustusRegistry public immutable AUGUSTUS_REGISTRY;

    /// @notice The address of the Morpho contract.
    IMorpho public immutable MORPHO;

    /* CONSTRUCTOR */

    /// @param bundler3 The address of the Bundler3 contract.
    /// @param morpho The address of the Morpho protocol.
    /// @param augustusRegistry The address of Paraswap's registry of Augustus contracts.
    constructor(address bundler3, address morpho, address augustusRegistry) CoreAdapter(bundler3) {
        require(morpho != address(0), ErrorsLib.ZeroAddress());
        require(augustusRegistry != address(0), ErrorsLib.ZeroAddress());

        MORPHO = IMorpho(morpho);
        AUGUSTUS_REGISTRY = IAugustusRegistry(augustusRegistry);
    }

    /* SWAP ACTIONS */

    /// @notice Sells an exact amount. Can check for a minimum purchased amount.
    /// @notice Compatibility with Augustus versions different from 6.2 is not guaranteed.
    /// @notice This function should be used immediately after sending tokens to the adapter, and any tokens remaining
    /// in the adapter after a swap should be transferred out immediately.
    /// @param augustus Address of the swapping contract. Must be in Paraswap's Augustus registry.
    /// @param callData Swap data to call `augustus` with. Contains routing information.
    /// @param srcToken Token to sell.
    /// @param destToken Token to buy.
    /// @param sellEntireBalance If true, adjusts amounts to sell the current balance of this contract.
    /// @param offsets Offsets in callData of the exact sell amount (`exactAmount`), minimum buy amount (`limitAmount`)
    /// and quoted buy amount (`quotedAmount`).
    /// @dev The quoted buy amount will change only if its offset is not zero.
    /// @param receiver Address to which bought assets will be sent. Any leftover `srcToken` should be skimmed
    /// separately.
    function sell(
        address augustus,
        bytes memory callData,
        address srcToken,
        address destToken,
        bool sellEntireBalance,
        Offsets calldata offsets,
        address receiver
    ) external {
        if (sellEntireBalance) {
            uint256 newSrcAmount = IERC20(srcToken).balanceOf(address(this));
            updateAmounts(callData, offsets, newSrcAmount, Math.Rounding.Ceil);
        }

        swap({
            augustus: augustus,
            callData: callData,
            srcToken: srcToken,
            destToken: destToken,
            maxSrcAmount: callData.get(offsets.exactAmount),
            minDestAmount: callData.get(offsets.limitAmount),
            receiver: receiver
        });
    }

    /// @notice Buys an exact amount. Can check for a maximum sold amount.
    /// @notice Compatibility with Augustus versions different from 6.2 is not guaranteed.
    /// @notice This function should be used immediately after sending tokens to the adapter, and any tokens remaining
    /// in the adapter after a swap should be transferred out immediately.
    /// @param augustus Address of the swapping contract. Must be in Paraswap's Augustus registry.
    /// @param callData Swap data to call `augustus`. Contains routing information.
    /// @param srcToken Token to sell.
    /// @param destToken Token to buy.
    /// @param newDestAmount Adjusted amount to buy. Will be used to update callData before sent to Augustus contract.
    /// @param offsets Offsets in callData of the exact buy amount (`exactAmount`), maximum sell amount (`limitAmount`)
    /// and quoted sell amount (`quotedAmount`).
    /// @dev The quoted sell amount will change only if its offset is not zero.
    /// @param receiver Address to which bought assets will be sent. Any leftover `srcToken` should be skimmed
    /// separately.
    function buy(
        address augustus,
        bytes memory callData,
        address srcToken,
        address destToken,
        uint256 newDestAmount,
        Offsets calldata offsets,
        address receiver
    ) public {
        if (newDestAmount != 0) {
            updateAmounts(callData, offsets, newDestAmount, Math.Rounding.Floor);
        }

        swap({
            augustus: augustus,
            callData: callData,
            srcToken: srcToken,
            destToken: destToken,
            maxSrcAmount: callData.get(offsets.limitAmount),
            minDestAmount: callData.get(offsets.exactAmount),
            receiver: receiver
        });
    }

    /// @notice Buys an amount corresponding to a user's Morpho debt.
    /// @notice Compatibility with Augustus versions different from 6.2 is not guaranteed.
    /// @notice This function should be used immediately after sending tokens to the adapter, and any tokens remaining
    /// in the adapter after a swap should be transferred out immediately.
    /// @param augustus Address of the swapping contract. Must be in Paraswap's Augustus registry.
    /// @param callData Swap data to call `augustus`. Contains routing information.
    /// @param srcToken Token to sell.
    /// @param marketParams Market parameters of the market with Morpho debt. The user must have nonzero debt.
    /// @param offsets Offsets in callData of the exact buy amount (`exactAmount`), maximum sell amount (`limitAmount`)
    /// and quoted sell amount (`quotedAmount`).
    /// @param onBehalf The amount bought will be exactly `onBehalf`'s debt.
    /// @param receiver Address to which bought assets will be sent. Any leftover `src` tokens should be skimmed
    /// separately.
    function buyMorphoDebt(
        address augustus,
        bytes memory callData,
        address srcToken,
        MarketParams calldata marketParams,
        Offsets calldata offsets,
        address onBehalf,
        address receiver
    ) external {
        uint256 debtAmount = MorphoBalancesLib.expectedBorrowAssets(MORPHO, marketParams, onBehalf);
        require(debtAmount != 0, ErrorsLib.ZeroAmount());
        buy({
            augustus: augustus,
            callData: callData,
            srcToken: srcToken,
            destToken: marketParams.loanToken,
            newDestAmount: debtAmount,
            offsets: offsets,
            receiver: receiver
        });
    }

    /* INTERNAL FUNCTIONS */

    /// @dev Executes the swap specified by `callData` with `augustus`.
    /// @dev Even if this adapter holds no approval, swaps are restricted to Bundler3 here as in all adapters in
    /// order to simplify the security model.
    /// @param augustus Address of the swapping contract. Must be in Paraswap's Augustus registry.
    /// @param callData Swap data to call `augustus`. Contains routing information.
    /// @param srcToken Token to sell.
    /// @param destToken Token to buy.
    /// @param maxSrcAmount Maximum amount of `srcToken` to sell.
    /// @param minDestAmount Minimum amount of `destToken` to buy.
    /// @param receiver Address to which bought assets will be sent. Any leftover `src` tokens should be skimmed
    /// separately.
    function swap(
        address augustus,
        bytes memory callData,
        address srcToken,
        address destToken,
        uint256 maxSrcAmount,
        uint256 minDestAmount,
        address receiver
    ) internal onlyBundler3 {
        require(AUGUSTUS_REGISTRY.isValidAugustus(augustus), ErrorsLib.InvalidAugustus());
        require(receiver != address(0), ErrorsLib.ZeroAddress());
        require(minDestAmount != 0, ErrorsLib.ZeroAmount());

        uint256 srcInitial = IERC20(srcToken).balanceOf(address(this));
        uint256 destInitial = IERC20(destToken).balanceOf(address(this));

        SafeERC20.forceApprove(IERC20(srcToken), augustus, type(uint256).max);

        (bool success, bytes memory returnData) = augustus.call(callData);
        if (!success) UtilsLib.lowLevelRevert(returnData);

        SafeERC20.forceApprove(IERC20(srcToken), augustus, 0);

        uint256 srcFinal = IERC20(srcToken).balanceOf(address(this));
        uint256 destFinal = IERC20(destToken).balanceOf(address(this));

        uint256 srcAmount = srcInitial - srcFinal;
        uint256 destAmount = destFinal - destInitial;

        require(srcAmount <= maxSrcAmount, ErrorsLib.SellAmountTooHigh());
        require(destAmount >= minDestAmount, ErrorsLib.BuyAmountTooLow());

        if (receiver != address(this)) {
            SafeERC20.safeTransfer(IERC20(destToken), receiver, destAmount);
        }
    }

    /// @notice Sets exact amount in `callData` to `exactAmount`.
    /// @notice Proportionally scale limit amount in `callData`.
    /// @notice If `offsets.quotedAmount` is not zero, proportionally scale quoted amount in `callData`.
    function updateAmounts(bytes memory callData, Offsets calldata offsets, uint256 exactAmount, Math.Rounding rounding)
        internal
        pure
    {
        uint256 oldExactAmount = callData.get(offsets.exactAmount);
        callData.set(offsets.exactAmount, exactAmount);

        uint256 limitAmount = callData.get(offsets.limitAmount).mulDiv(exactAmount, oldExactAmount, rounding);
        callData.set(offsets.limitAmount, limitAmount);

        if (offsets.quotedAmount > 0) {
            uint256 quotedAmount = callData.get(offsets.quotedAmount).mulDiv(exactAmount, oldExactAmount, rounding);
            callData.set(offsets.quotedAmount, quotedAmount);
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {MarketParams} from "../../lib/morpho-blue/src/interfaces/IMorpho.sol";

/// @notice The offsets are:
///  - exactAmount, the offset in augustus calldata of the exact amount to sell / buy.
///  - limitAmount, the offset in augustus calldata of the minimum amount to buy / maximum amount to sell
///  - quotedAmount, the offset in augustus calldata of the initially quoted buy amount / initially quoted sell amount.
/// Set to 0 if the quoted amount is not present in augustus calldata so that it is not used.
struct Offsets {
    uint256 exactAmount;
    uint256 limitAmount;
    uint256 quotedAmount;
}

/// @custom:security-contact [email protected]
/// @notice Interface of Paraswap Adapter.
interface IParaswapAdapter {
    function sell(
        address augustus,
        bytes memory callData,
        address srcToken,
        address destToken,
        bool sellEntireBalance,
        Offsets calldata offsets,
        address receiver
    ) external;

    function buy(
        address augustus,
        bytes memory callData,
        address srcToken,
        address destToken,
        uint256 newDestAmount,
        Offsets calldata offsets,
        address receiver
    ) external;

    function buyMorphoDebt(
        address augustus,
        bytes memory callData,
        address srcToken,
        MarketParams calldata marketParams,
        Offsets calldata offsets,
        address onBehalf,
        address receiver
    ) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
// Paraswap registry of valid Augustus contracts
// https://github.com/paraswap/augustus-v5/blob/d297477b8fc7be65c337b0cf2bc21f4f7f925b68/contracts/IAugustusRegistry.sol
pragma solidity >=0.5.0;

interface IAugustusRegistry {
    function isValidAugustus(address augustus) external view returns (bool);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {ErrorsLib} from "../libraries/ErrorsLib.sol";
import {SafeERC20, IERC20} from "../../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {Address} from "../../lib/openzeppelin-contracts/contracts/utils/Address.sol";
import {IBundler3} from "../interfaces/IBundler3.sol";
import {UtilsLib} from "../libraries/UtilsLib.sol";

/// @custom:security-contact [email protected]
/// @notice Common contract to all Bundler3 adapters.
abstract contract CoreAdapter {
    /* IMMUTABLES */

    /// @notice The address of the Bundler3 contract.
    address public immutable BUNDLER3;

    /* CONSTRUCTOR */

    /// @param bundler3 The address of the Bundler3 contract.
    constructor(address bundler3) {
        require(bundler3 != address(0), ErrorsLib.ZeroAddress());

        BUNDLER3 = bundler3;
    }

    /* MODIFIERS */

    /// @dev Prevents a function from being called outside of a bundle context.
    /// @dev Ensures the value of initiator() is correct.
    modifier onlyBundler3() {
        require(msg.sender == BUNDLER3, ErrorsLib.UnauthorizedSender());
        _;
    }

    /* FALLBACKS */

    /// @notice Native tokens are received by the adapter and should be used afterwards.
    /// @dev Allows the wrapped native contract to transfer native tokens to the adapter.
    receive() external payable virtual {}

    /* ACTIONS */

    /// @notice Transfers native assets.
    /// @param receiver The address that will receive the native tokens.
    /// @param amount The amount of native tokens to transfer. Pass `type(uint).max` to transfer the adapter's balance
    /// (this allows 0 value transfers).
    function nativeTransfer(address receiver, uint256 amount) external onlyBundler3 {
        require(receiver != address(0), ErrorsLib.ZeroAddress());
        require(receiver != address(this), ErrorsLib.AdapterAddress());

        if (amount == type(uint256).max) amount = address(this).balance;
        else require(amount != 0, ErrorsLib.ZeroAmount());

        if (amount > 0) Address.sendValue(payable(receiver), amount);
    }

    /// @notice Transfers ERC20 tokens.
    /// @param token The address of the ERC20 token to transfer.
    /// @param receiver The address that will receive the tokens.
    /// @param amount The amount of token to transfer. Pass `type(uint).max` to transfer the adapter's balance (this
    /// allows 0 value transfers).
    function erc20Transfer(address token, address receiver, uint256 amount) external onlyBundler3 {
        require(receiver != address(0), ErrorsLib.ZeroAddress());
        require(receiver != address(this), ErrorsLib.AdapterAddress());

        if (amount == type(uint256).max) amount = IERC20(token).balanceOf(address(this));
        else require(amount != 0, ErrorsLib.ZeroAmount());

        if (amount > 0) SafeERC20.safeTransfer(IERC20(token), receiver, amount);
    }

    /* INTERNAL */

    /// @notice Returns the current initiator stored in the adapter.
    /// @dev The initiator value being non-zero indicates that a bundle is being processed.
    function initiator() internal view returns (address) {
        return IBundler3(BUNDLER3).initiator();
    }

    /// @notice Calls bundler3.reenter with an already encoded Call array.
    /// @dev Useful to skip an ABI decode-encode step when transmitting callback data.
    /// @param data An abi-encoded Call[].
    function reenterBundler3(bytes calldata data) internal {
        (bool success, bytes memory returnData) = BUNDLER3.call(bytes.concat(IBundler3.reenter.selector, data));
        if (!success) UtilsLib.lowLevelRevert(returnData);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {ErrorsLib} from "./ErrorsLib.sol";

/// @custom:security-contact [email protected]
/// @notice Library exposing bytes manipulation.
library BytesLib {
    /// @notice Reads 32 bytes at offset `offset` of memory bytes `data`.
    function get(bytes memory data, uint256 offset) internal pure returns (uint256 currentValue) {
        require(offset <= data.length - 32, ErrorsLib.InvalidOffset());
        assembly ("memory-safe") {
            currentValue := mload(add(32, add(data, offset)))
        }
    }

    /// @notice Writes `value` at offset `offset` of memory bytes `data`.
    function set(bytes memory data, uint256 offset, uint256 value) internal pure {
        require(offset <= data.length - 32, ErrorsLib.InvalidOffset());
        assembly ("memory-safe") {
            mstore(add(32, add(data, offset)), value)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {Id, MarketParams, Market, IMorpho} from "../../interfaces/IMorpho.sol";
import {IIrm} from "../../interfaces/IIrm.sol";

import {MathLib} from "../MathLib.sol";
import {UtilsLib} from "../UtilsLib.sol";
import {MorphoLib} from "./MorphoLib.sol";
import {SharesMathLib} from "../SharesMathLib.sol";
import {MarketParamsLib} from "../MarketParamsLib.sol";

/// @title MorphoBalancesLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Helper library exposing getters with the expected value after interest accrual.
/// @dev This library is not used in Morpho itself and is intended to be used by integrators.
/// @dev The getter to retrieve the expected total borrow shares is not exposed because interest accrual does not apply
/// to it. The value can be queried directly on Morpho using `totalBorrowShares`.
library MorphoBalancesLib {
    using MathLib for uint256;
    using MathLib for uint128;
    using UtilsLib for uint256;
    using MorphoLib for IMorpho;
    using SharesMathLib for uint256;
    using MarketParamsLib for MarketParams;

    /// @notice Returns the expected market balances of a market after having accrued interest.
    /// @return The expected total supply assets.
    /// @return The expected total supply shares.
    /// @return The expected total borrow assets.
    /// @return The expected total borrow shares.
    function expectedMarketBalances(IMorpho morpho, MarketParams memory marketParams)
        internal
        view
        returns (uint256, uint256, uint256, uint256)
    {
        Id id = marketParams.id();
        Market memory market = morpho.market(id);

        uint256 elapsed = block.timestamp - market.lastUpdate;

        // Skipped if elapsed == 0 or totalBorrowAssets == 0 because interest would be null, or if irm == address(0).
        if (elapsed != 0 && market.totalBorrowAssets != 0 && marketParams.irm != address(0)) {
            uint256 borrowRate = IIrm(marketParams.irm).borrowRateView(marketParams, market);
            uint256 interest = market.totalBorrowAssets.wMulDown(borrowRate.wTaylorCompounded(elapsed));
            market.totalBorrowAssets += interest.toUint128();
            market.totalSupplyAssets += interest.toUint128();

            if (market.fee != 0) {
                uint256 feeAmount = interest.wMulDown(market.fee);
                // The fee amount is subtracted from the total supply in this calculation to compensate for the fact
                // that total supply is already updated.
                uint256 feeShares =
                    feeAmount.toSharesDown(market.totalSupplyAssets - feeAmount, market.totalSupplyShares);
                market.totalSupplyShares += feeShares.toUint128();
            }
        }

        return (market.totalSupplyAssets, market.totalSupplyShares, market.totalBorrowAssets, market.totalBorrowShares);
    }

    /// @notice Returns the expected total supply assets of a market after having accrued interest.
    function expectedTotalSupplyAssets(IMorpho morpho, MarketParams memory marketParams)
        internal
        view
        returns (uint256 totalSupplyAssets)
    {
        (totalSupplyAssets,,,) = expectedMarketBalances(morpho, marketParams);
    }

    /// @notice Returns the expected total borrow assets of a market after having accrued interest.
    function expectedTotalBorrowAssets(IMorpho morpho, MarketParams memory marketParams)
        internal
        view
        returns (uint256 totalBorrowAssets)
    {
        (,, totalBorrowAssets,) = expectedMarketBalances(morpho, marketParams);
    }

    /// @notice Returns the expected total supply shares of a market after having accrued interest.
    function expectedTotalSupplyShares(IMorpho morpho, MarketParams memory marketParams)
        internal
        view
        returns (uint256 totalSupplyShares)
    {
        (, totalSupplyShares,,) = expectedMarketBalances(morpho, marketParams);
    }

    /// @notice Returns the expected supply assets balance of `user` on a market after having accrued interest.
    /// @dev Warning: Wrong for `feeRecipient` because their supply shares increase is not taken into account.
    /// @dev Warning: Withdrawing using the expected supply assets can lead to a revert due to conversion roundings from
    /// assets to shares.
    function expectedSupplyAssets(IMorpho morpho, MarketParams memory marketParams, address user)
        internal
        view
        returns (uint256)
    {
        Id id = marketParams.id();
        uint256 supplyShares = morpho.supplyShares(id, user);
        (uint256 totalSupplyAssets, uint256 totalSupplyShares,,) = expectedMarketBalances(morpho, marketParams);

        return supplyShares.toAssetsDown(totalSupplyAssets, totalSupplyShares);
    }

    /// @notice Returns the expected borrow assets balance of `user` on a market after having accrued interest.
    /// @dev Warning: The expected balance is rounded up, so it may be greater than the market's expected total borrow
    /// assets.
    function expectedBorrowAssets(IMorpho morpho, MarketParams memory marketParams, address user)
        internal
        view
        returns (uint256)
    {
        Id id = marketParams.id();
        uint256 borrowShares = morpho.borrowShares(id, user);
        (,, uint256 totalBorrowAssets, uint256 totalBorrowShares) = expectedMarketBalances(morpho, marketParams);

        return borrowShares.toAssetsUp(totalBorrowAssets, totalBorrowShares);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

type Id is bytes32;

struct MarketParams {
    address loanToken;
    address collateralToken;
    address oracle;
    address irm;
    uint256 lltv;
}

/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
    uint256 supplyShares;
    uint128 borrowShares;
    uint128 collateral;
}

/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
    uint128 totalSupplyAssets;
    uint128 totalSupplyShares;
    uint128 totalBorrowAssets;
    uint128 totalBorrowShares;
    uint128 lastUpdate;
    uint128 fee;
}

struct Authorization {
    address authorizer;
    address authorized;
    bool isAuthorized;
    uint256 nonce;
    uint256 deadline;
}

struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
}

/// @dev This interface is used for factorizing IMorphoStaticTyping and IMorpho.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoBase {
    /// @notice The EIP-712 domain separator.
    /// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on another chain sharing
    /// the same chain id because the domain separator would be the same.
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice The owner of the contract.
    /// @dev It has the power to change the owner.
    /// @dev It has the power to set fees on markets and set the fee recipient.
    /// @dev It has the power to enable but not disable IRMs and LLTVs.
    function owner() external view returns (address);

    /// @notice The fee recipient of all markets.
    /// @dev The recipient receives the fees of a given market through a supply position on that market.
    function feeRecipient() external view returns (address);

    /// @notice Whether the `irm` is enabled.
    function isIrmEnabled(address irm) external view returns (bool);

    /// @notice Whether the `lltv` is enabled.
    function isLltvEnabled(uint256 lltv) external view returns (bool);

    /// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
    /// @dev Anyone is authorized to modify their own positions, regardless of this variable.
    function isAuthorized(address authorizer, address authorized) external view returns (bool);

    /// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
    function nonce(address authorizer) external view returns (uint256);

    /// @notice Sets `newOwner` as `owner` of the contract.
    /// @dev Warning: No two-step transfer ownership.
    /// @dev Warning: The owner can be set to the zero address.
    function setOwner(address newOwner) external;

    /// @notice Enables `irm` as a possible IRM for market creation.
    /// @dev Warning: It is not possible to disable an IRM.
    function enableIrm(address irm) external;

    /// @notice Enables `lltv` as a possible LLTV for market creation.
    /// @dev Warning: It is not possible to disable a LLTV.
    function enableLltv(uint256 lltv) external;

    /// @notice Sets the `newFee` for the given market `marketParams`.
    /// @param newFee The new fee, scaled by WAD.
    /// @dev Warning: The recipient can be the zero address.
    function setFee(MarketParams memory marketParams, uint256 newFee) external;

    /// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
    /// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
    /// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
    /// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
    function setFeeRecipient(address newFeeRecipient) external;

    /// @notice Creates the market `marketParams`.
    /// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
    /// Morpho behaves as expected:
    /// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
    /// - The token balance of Morpho should only decrease on `transfer` and `transferFrom`. In particular, tokens with
    /// burn functions are not supported.
    /// - The token should not re-enter Morpho on `transfer` nor `transferFrom`.
    /// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
    /// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
    /// - The IRM should not re-enter Morpho.
    /// - The oracle should return a price with the correct scaling.
    /// @dev Here is a list of properties on the market's dependencies that could break Morpho's liveness properties
    /// (funds could get stuck):
    /// - The token can revert on `transfer` and `transferFrom` for a reason other than an approval or balance issue.
    /// - A very high amount of assets (~1e35) supplied or borrowed can make the computation of `toSharesUp` and
    /// `toSharesDown` overflow.
    /// - The IRM can revert on `borrowRate`.
    /// - A very high borrow rate returned by the IRM can make the computation of `interest` in `_accrueInterest`
    /// overflow.
    /// - The oracle can revert on `price`. Note that this can be used to prevent `borrow`, `withdrawCollateral` and
    /// `liquidate` from being used under certain market conditions.
    /// - A very high price returned by the oracle can make the computation of `maxBorrow` in `_isHealthy` overflow, or
    /// the computation of `assetsRepaid` in `liquidate` overflow.
    /// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
    /// the point where `totalBorrowShares` is very large and borrowing overflows.
    function createMarket(MarketParams memory marketParams) external;

    /// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupply` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
    /// amount of shares is given for full compatibility and precision.
    /// @dev Supplying a large amount can revert for overflow.
    /// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to supply assets to.
    /// @param assets The amount of assets to supply.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased supply position.
    /// @param data Arbitrary data to pass to the `onMorphoSupply` callback. Pass empty data if not needed.
    /// @return assetsSupplied The amount of assets supplied.
    /// @return sharesSupplied The amount of shares minted.
    function supply(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsSupplied, uint256 sharesSupplied);

    /// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
    /// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
    /// conversion roundings between shares and assets.
    /// @param marketParams The market to withdraw assets from.
    /// @param assets The amount of assets to withdraw.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the supply position.
    /// @param receiver The address that will receive the withdrawn assets.
    /// @return assetsWithdrawn The amount of assets withdrawn.
    /// @return sharesWithdrawn The amount of shares burned.
    function withdraw(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);

    /// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
    /// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
    /// given for full compatibility and precision.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Borrowing a large amount can revert for overflow.
    /// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
    /// Consider using the `assets` parameter to avoid this.
    /// @param marketParams The market to borrow assets from.
    /// @param assets The amount of assets to borrow.
    /// @param shares The amount of shares to mint.
    /// @param onBehalf The address that will own the increased borrow position.
    /// @param receiver The address that will receive the borrowed assets.
    /// @return assetsBorrowed The amount of assets borrowed.
    /// @return sharesBorrowed The amount of shares minted.
    function borrow(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        address receiver
    ) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);

    /// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoReplay` function with the given `data`.
    /// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
    /// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
    /// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
    /// roundings between shares and assets.
    /// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
    /// @param marketParams The market to repay assets to.
    /// @param assets The amount of assets to repay.
    /// @param shares The amount of shares to burn.
    /// @param onBehalf The address of the owner of the debt position.
    /// @param data Arbitrary data to pass to the `onMorphoRepay` callback. Pass empty data if not needed.
    /// @return assetsRepaid The amount of assets repaid.
    /// @return sharesRepaid The amount of shares burned.
    function repay(
        MarketParams memory marketParams,
        uint256 assets,
        uint256 shares,
        address onBehalf,
        bytes memory data
    ) external returns (uint256 assetsRepaid, uint256 sharesRepaid);

    /// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
    /// `onMorphoSupplyCollateral` function with the given `data`.
    /// @dev Interest are not accrued since it's not required and it saves gas.
    /// @dev Supplying a large amount can revert for overflow.
    /// @param marketParams The market to supply collateral to.
    /// @param assets The amount of collateral to supply.
    /// @param onBehalf The address that will own the increased collateral position.
    /// @param data Arbitrary data to pass to the `onMorphoSupplyCollateral` callback. Pass empty data if not needed.
    function supplyCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, bytes memory data)
        external;

    /// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
    /// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
    /// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
    /// @param marketParams The market to withdraw collateral from.
    /// @param assets The amount of collateral to withdraw.
    /// @param onBehalf The address of the owner of the collateral position.
    /// @param receiver The address that will receive the collateral assets.
    function withdrawCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, address receiver)
        external;

    /// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
    /// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
    /// `onMorphoLiquidate` function with the given `data`.
    /// @dev Either `seizedAssets` or `repaidShares` should be zero.
    /// @dev Seizing more than the collateral balance will underflow and revert without any error message.
    /// @dev Repaying more than the borrow balance will underflow and revert without any error message.
    /// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
    /// @param marketParams The market of the position.
    /// @param borrower The owner of the position.
    /// @param seizedAssets The amount of collateral to seize.
    /// @param repaidShares The amount of shares to repay.
    /// @param data Arbitrary data to pass to the `onMorphoLiquidate` callback. Pass empty data if not needed.
    /// @return The amount of assets seized.
    /// @return The amount of assets repaid.
    function liquidate(
        MarketParams memory marketParams,
        address borrower,
        uint256 seizedAssets,
        uint256 repaidShares,
        bytes memory data
    ) external returns (uint256, uint256);

    /// @notice Executes a flash loan.
    /// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
    /// markets combined, plus donations).
    /// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
    /// - `flashFee` is zero.
    /// - `maxFlashLoan` is the token's balance of this contract.
    /// - The receiver of `assets` is the caller.
    /// @param token The token to flash loan.
    /// @param assets The amount of assets to flash loan.
    /// @param data Arbitrary data to pass to the `onMorphoFlashLoan` callback.
    function flashLoan(address token, uint256 assets, bytes calldata data) external;

    /// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
    /// @param authorized The authorized address.
    /// @param newIsAuthorized The new authorization status.
    function setAuthorization(address authorized, bool newIsAuthorized) external;

    /// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
    /// @dev Warning: Reverts if the signature has already been submitted.
    /// @dev The signature is malleable, but it has no impact on the security here.
    /// @dev The nonce is passed as argument to be able to revert with a different error message.
    /// @param authorization The `Authorization` struct.
    /// @param signature The signature.
    function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;

    /// @notice Accrues interest for the given market `marketParams`.
    function accrueInterest(MarketParams memory marketParams) external;

    /// @notice Returns the data stored on the different `slots`.
    function extSloads(bytes32[] memory slots) external view returns (bytes32[] memory);
}

/// @dev This interface is inherited by Morpho so that function signatures are checked by the compiler.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoStaticTyping is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user)
        external
        view
        returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last interest
    /// accrual.
    function market(Id id)
        external
        view
        returns (
            uint128 totalSupplyAssets,
            uint128 totalSupplyShares,
            uint128 totalBorrowAssets,
            uint128 totalBorrowShares,
            uint128 lastUpdate,
            uint128 fee
        );

    /// @notice The market params corresponding to `id`.
    /// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
    /// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
    function idToMarketParams(Id id)
        external
        view
        returns (address loanToken, address collateralToken, address oracle, address irm, uint256 lltv);
}

/// @title IMorpho
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @dev Use this interface for Morpho to have access to all the functions with the appropriate function signatures.
interface IMorpho is IMorphoBase {
    /// @notice The state of the position of `user` on the market corresponding to `id`.
    /// @dev Warning: For `feeRecipient`, `p.supplyShares` does not contain the accrued shares since the last interest
    /// accrual.
    function position(Id id, address user) external view returns (Position memory p);

    /// @notice The state of the market corresponding to `id`.
    /// @dev Warning: `m.totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `m.totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
    /// @dev Warning: `m.totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last
    /// interest accrual.
    function market(Id id) external view returns (Market memory m);

    /// @notice The market params corresponding to `id`.
    /// @dev This mapping is not used in Morpho. It is there to enable reducing the cost associated to calldata on layer
    /// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
    function idToMarketParams(Id id) external view returns (MarketParams memory);
}

File 9 of 29 : ErrorsLib.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @custom:security-contact [email protected]
/// @notice Library exposing error messages.
library ErrorsLib {
    /* STANDARD ADAPTERS */

    /// @dev Thrown when a multicall is attempted while a bundle is already initiated.
    error AlreadyInitiated();

    /// @dev Thrown when a call is attempted from an unauthorized sender.
    error UnauthorizedSender();

    /// @dev Thrown when a reenter is attempted but the concatenation of the sender and bundle does not hash to the
    /// pre-recorded `reenterHash`.
    error IncorrectReenterHash();

    /// @dev Thrown when a multicall is attempted with an empty bundle.
    error EmptyBundle();

    /// @dev Thrown when a reenter was expected but did not happen.
    error MissingExpectedReenter();

    /// @dev Thrown when a call is attempted with a zero address as input.
    error ZeroAddress();

    /// @dev Thrown when a call is attempted with the adapter address as input.
    error AdapterAddress();

    /// @dev Thrown when a call is attempted with a zero amount as input.
    error ZeroAmount();

    /// @dev Thrown when a call is attempted with a zero shares as input.
    error ZeroShares();

    /// @dev Thrown when the given owner is unexpected.
    error UnexpectedOwner();

    /// @dev Thrown when an action ends up minting/burning more shares than a given slippage.
    error SlippageExceeded();

    /// @dev Thrown when a call to depositFor fails.
    error DepositFailed();

    /// @dev Thrown when a call to withdrawTo fails.
    error WithdrawFailed();

    /* MIGRATION ADAPTERS */

    /// @dev Thrown when repaying a CompoundV2 debt returns an error code.
    error RepayError();

    /// @dev Thrown when redeeming CompoundV2 cTokens returns an error code.
    error RedeemError();

    /// @dev Thrown when trying to repay ETH on CompoundV2 with the wrong function.
    error CTokenIsCETH();

    /* PARASWAP ADAPTER */

    /// @dev Thrown when the contract used to trade is not deemed valid by Paraswap's Augustus registry.
    error InvalidAugustus();

    /// @dev Thrown when a data offset is invalid.
    error InvalidOffset();

    /// @dev Thrown when a swap has spent too many source tokens.
    error SellAmountTooHigh();

    /// @dev Thrown when a swap has not bought enough destination tokens.
    error BuyAmountTooLow();
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;

/// @notice Struct containing all the data needed to make a call.
/// @notice The call target is `to`, the calldata is `data` with value `value`.
/// @notice If `skipRevert` is true, other planned calls will continue executing even if this call reverts. `skipRevert`
/// will ignore all reverts. Use with caution.
/// @notice If the call will trigger a reenter, the callbackHash should be set to the hash of the reenter bundle data.
struct Call {
    address to;
    bytes data;
    uint256 value;
    bool skipRevert;
    bytes32 callbackHash;
}

/// @custom:security-contact [email protected]
interface IBundler3 {
    function multicall(Call[] calldata) external payable;
    function reenter(Call[] calldata) external;
    function reenterHash() external view returns (bytes32);
    function initiator() external view returns (address);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {SafeERC20, IERC20} from "../../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";

/// @custom:security-contact [email protected]
/// @notice Utils library.
library UtilsLib {
    /// @dev Bubbles up the revert reason / custom error encoded in `returnData`.
    /// @dev Assumes `returnData` is the return data of any kind of failing CALL to a contract.
    function lowLevelRevert(bytes memory returnData) internal pure {
        assembly ("memory-safe") {
            revert(add(32, returnData), mload(returnData))
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 15 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {MarketParams, Market} from "./IMorpho.sol";

/// @title IIrm
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Interface that Interest Rate Models (IRMs) used by Morpho must implement.
interface IIrm {
    /// @notice Returns the borrow rate per second (scaled by WAD) of the market `marketParams`.
    /// @dev Assumes that `market` corresponds to `marketParams`.
    function borrowRate(MarketParams memory marketParams, Market memory market) external returns (uint256);

    /// @notice Returns the borrow rate per second (scaled by WAD) of the market `marketParams` without modifying any
    /// storage.
    /// @dev Assumes that `market` corresponds to `marketParams`.
    function borrowRateView(MarketParams memory marketParams, Market memory market) external view returns (uint256);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

uint256 constant WAD = 1e18;

/// @title MathLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Library to manage fixed-point arithmetic.
library MathLib {
    /// @dev Returns (`x` * `y`) / `WAD` rounded down.
    function wMulDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD);
    }

    /// @dev Returns (`x` * `WAD`) / `y` rounded down.
    function wDivDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y);
    }

    /// @dev Returns (`x` * `WAD`) / `y` rounded up.
    function wDivUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y);
    }

    /// @dev Returns (`x` * `y`) / `d` rounded down.
    function mulDivDown(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) {
        return (x * y) / d;
    }

    /// @dev Returns (`x` * `y`) / `d` rounded up.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) {
        return (x * y + (d - 1)) / d;
    }

    /// @dev Returns the sum of the first three non-zero terms of a Taylor expansion of e^(nx) - 1, to approximate a
    /// continuous compound interest rate.
    function wTaylorCompounded(uint256 x, uint256 n) internal pure returns (uint256) {
        uint256 firstTerm = x * n;
        uint256 secondTerm = mulDivDown(firstTerm, firstTerm, 2 * WAD);
        uint256 thirdTerm = mulDivDown(secondTerm, firstTerm, 3 * WAD);

        return firstTerm + secondTerm + thirdTerm;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {ErrorsLib} from "../libraries/ErrorsLib.sol";

/// @title UtilsLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Library exposing helpers.
/// @dev Inspired by https://github.com/morpho-org/morpho-utils.
library UtilsLib {
    /// @dev Returns true if there is exactly one zero among `x` and `y`.
    function exactlyOneZero(uint256 x, uint256 y) internal pure returns (bool z) {
        assembly {
            z := xor(iszero(x), iszero(y))
        }
    }

    /// @dev Returns the min of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns `x` safely cast to uint128.
    function toUint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max, ErrorsLib.MAX_UINT128_EXCEEDED);
        return uint128(x);
    }

    /// @dev Returns max(0, x - y).
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IMorpho, Id} from "../../interfaces/IMorpho.sol";
import {MorphoStorageLib} from "./MorphoStorageLib.sol";

/// @title MorphoLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Helper library to access Morpho storage variables.
/// @dev Warning: Supply and borrow getters may return outdated values that do not include accrued interest.
library MorphoLib {
    function supplyShares(IMorpho morpho, Id id, address user) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.positionSupplySharesSlot(id, user));
        return uint256(morpho.extSloads(slot)[0]);
    }

    function borrowShares(IMorpho morpho, Id id, address user) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.positionBorrowSharesAndCollateralSlot(id, user));
        return uint128(uint256(morpho.extSloads(slot)[0]));
    }

    function collateral(IMorpho morpho, Id id, address user) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.positionBorrowSharesAndCollateralSlot(id, user));
        return uint256(morpho.extSloads(slot)[0] >> 128);
    }

    function totalSupplyAssets(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketTotalSupplyAssetsAndSharesSlot(id));
        return uint128(uint256(morpho.extSloads(slot)[0]));
    }

    function totalSupplyShares(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketTotalSupplyAssetsAndSharesSlot(id));
        return uint256(morpho.extSloads(slot)[0] >> 128);
    }

    function totalBorrowAssets(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketTotalBorrowAssetsAndSharesSlot(id));
        return uint128(uint256(morpho.extSloads(slot)[0]));
    }

    function totalBorrowShares(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketTotalBorrowAssetsAndSharesSlot(id));
        return uint256(morpho.extSloads(slot)[0] >> 128);
    }

    function lastUpdate(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketLastUpdateAndFeeSlot(id));
        return uint128(uint256(morpho.extSloads(slot)[0]));
    }

    function fee(IMorpho morpho, Id id) internal view returns (uint256) {
        bytes32[] memory slot = _array(MorphoStorageLib.marketLastUpdateAndFeeSlot(id));
        return uint256(morpho.extSloads(slot)[0] >> 128);
    }

    function _array(bytes32 x) private pure returns (bytes32[] memory) {
        bytes32[] memory res = new bytes32[](1);
        res[0] = x;
        return res;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {MathLib} from "./MathLib.sol";

/// @title SharesMathLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Shares management library.
/// @dev This implementation mitigates share price manipulations, using OpenZeppelin's method of virtual shares:
/// https://docs.openzeppelin.com/contracts/4.x/erc4626#inflation-attack.
library SharesMathLib {
    using MathLib for uint256;

    /// @dev The number of virtual shares has been chosen low enough to prevent overflows, and high enough to ensure
    /// high precision computations.
    /// @dev Virtual shares can never be redeemed for the assets they are entitled to, but it is assumed the share price
    /// stays low enough not to inflate these assets to a significant value.
    /// @dev Warning: The assets to which virtual borrow shares are entitled behave like unrealizable bad debt.
    uint256 internal constant VIRTUAL_SHARES = 1e6;

    /// @dev A number of virtual assets of 1 enforces a conversion rate between shares and assets when a market is
    /// empty.
    uint256 internal constant VIRTUAL_ASSETS = 1;

    /// @dev Calculates the value of `assets` quoted in shares, rounding down.
    function toSharesDown(uint256 assets, uint256 totalAssets, uint256 totalShares) internal pure returns (uint256) {
        return assets.mulDivDown(totalShares + VIRTUAL_SHARES, totalAssets + VIRTUAL_ASSETS);
    }

    /// @dev Calculates the value of `shares` quoted in assets, rounding down.
    function toAssetsDown(uint256 shares, uint256 totalAssets, uint256 totalShares) internal pure returns (uint256) {
        return shares.mulDivDown(totalAssets + VIRTUAL_ASSETS, totalShares + VIRTUAL_SHARES);
    }

    /// @dev Calculates the value of `assets` quoted in shares, rounding up.
    function toSharesUp(uint256 assets, uint256 totalAssets, uint256 totalShares) internal pure returns (uint256) {
        return assets.mulDivUp(totalShares + VIRTUAL_SHARES, totalAssets + VIRTUAL_ASSETS);
    }

    /// @dev Calculates the value of `shares` quoted in assets, rounding up.
    function toAssetsUp(uint256 shares, uint256 totalAssets, uint256 totalShares) internal pure returns (uint256) {
        return shares.mulDivUp(totalAssets + VIRTUAL_ASSETS, totalShares + VIRTUAL_SHARES);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {Id, MarketParams} from "../interfaces/IMorpho.sol";

/// @title MarketParamsLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Library to convert a market to its id.
library MarketParamsLib {
    /// @notice The length of the data used to compute the id of a market.
    /// @dev The length is 5 * 32 because `MarketParams` has 5 variables of 32 bytes each.
    uint256 internal constant MARKET_PARAMS_BYTES_LENGTH = 5 * 32;

    /// @notice Returns the id of the market `marketParams`.
    function id(MarketParams memory marketParams) internal pure returns (Id marketParamsId) {
        assembly ("memory-safe") {
            marketParamsId := keccak256(marketParams, MARKET_PARAMS_BYTES_LENGTH)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 24 of 29 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 25 of 29 : ErrorsLib.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title ErrorsLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Library exposing error messages.
library ErrorsLib {
    /// @notice Thrown when the caller is not the owner.
    string internal constant NOT_OWNER = "not owner";

    /// @notice Thrown when the LLTV to enable exceeds the maximum LLTV.
    string internal constant MAX_LLTV_EXCEEDED = "max LLTV exceeded";

    /// @notice Thrown when the fee to set exceeds the maximum fee.
    string internal constant MAX_FEE_EXCEEDED = "max fee exceeded";

    /// @notice Thrown when the value is already set.
    string internal constant ALREADY_SET = "already set";

    /// @notice Thrown when the IRM is not enabled at market creation.
    string internal constant IRM_NOT_ENABLED = "IRM not enabled";

    /// @notice Thrown when the LLTV is not enabled at market creation.
    string internal constant LLTV_NOT_ENABLED = "LLTV not enabled";

    /// @notice Thrown when the market is already created.
    string internal constant MARKET_ALREADY_CREATED = "market already created";

    /// @notice Thrown when a token to transfer doesn't have code.
    string internal constant NO_CODE = "no code";

    /// @notice Thrown when the market is not created.
    string internal constant MARKET_NOT_CREATED = "market not created";

    /// @notice Thrown when not exactly one of the input amount is zero.
    string internal constant INCONSISTENT_INPUT = "inconsistent input";

    /// @notice Thrown when zero assets is passed as input.
    string internal constant ZERO_ASSETS = "zero assets";

    /// @notice Thrown when a zero address is passed as input.
    string internal constant ZERO_ADDRESS = "zero address";

    /// @notice Thrown when the caller is not authorized to conduct an action.
    string internal constant UNAUTHORIZED = "unauthorized";

    /// @notice Thrown when the collateral is insufficient to `borrow` or `withdrawCollateral`.
    string internal constant INSUFFICIENT_COLLATERAL = "insufficient collateral";

    /// @notice Thrown when the liquidity is insufficient to `withdraw` or `borrow`.
    string internal constant INSUFFICIENT_LIQUIDITY = "insufficient liquidity";

    /// @notice Thrown when the position to liquidate is healthy.
    string internal constant HEALTHY_POSITION = "position is healthy";

    /// @notice Thrown when the authorization signature is invalid.
    string internal constant INVALID_SIGNATURE = "invalid signature";

    /// @notice Thrown when the authorization signature is expired.
    string internal constant SIGNATURE_EXPIRED = "signature expired";

    /// @notice Thrown when the nonce is invalid.
    string internal constant INVALID_NONCE = "invalid nonce";

    /// @notice Thrown when a token transfer reverted.
    string internal constant TRANSFER_REVERTED = "transfer reverted";

    /// @notice Thrown when a token transfer returned false.
    string internal constant TRANSFER_RETURNED_FALSE = "transfer returned false";

    /// @notice Thrown when a token transferFrom reverted.
    string internal constant TRANSFER_FROM_REVERTED = "transferFrom reverted";

    /// @notice Thrown when a token transferFrom returned false
    string internal constant TRANSFER_FROM_RETURNED_FALSE = "transferFrom returned false";

    /// @notice Thrown when the maximum uint128 is exceeded.
    string internal constant MAX_UINT128_EXCEEDED = "max uint128 exceeded";
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {Id} from "../../interfaces/IMorpho.sol";

/// @title MorphoStorageLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Helper library exposing getters to access Morpho storage variables' slot.
/// @dev This library is not used in Morpho itself and is intended to be used by integrators.
library MorphoStorageLib {
    /* SLOTS */

    uint256 internal constant OWNER_SLOT = 0;
    uint256 internal constant FEE_RECIPIENT_SLOT = 1;
    uint256 internal constant POSITION_SLOT = 2;
    uint256 internal constant MARKET_SLOT = 3;
    uint256 internal constant IS_IRM_ENABLED_SLOT = 4;
    uint256 internal constant IS_LLTV_ENABLED_SLOT = 5;
    uint256 internal constant IS_AUTHORIZED_SLOT = 6;
    uint256 internal constant NONCE_SLOT = 7;
    uint256 internal constant ID_TO_MARKET_PARAMS_SLOT = 8;

    /* SLOT OFFSETS */

    uint256 internal constant LOAN_TOKEN_OFFSET = 0;
    uint256 internal constant COLLATERAL_TOKEN_OFFSET = 1;
    uint256 internal constant ORACLE_OFFSET = 2;
    uint256 internal constant IRM_OFFSET = 3;
    uint256 internal constant LLTV_OFFSET = 4;

    uint256 internal constant SUPPLY_SHARES_OFFSET = 0;
    uint256 internal constant BORROW_SHARES_AND_COLLATERAL_OFFSET = 1;

    uint256 internal constant TOTAL_SUPPLY_ASSETS_AND_SHARES_OFFSET = 0;
    uint256 internal constant TOTAL_BORROW_ASSETS_AND_SHARES_OFFSET = 1;
    uint256 internal constant LAST_UPDATE_AND_FEE_OFFSET = 2;

    /* GETTERS */

    function ownerSlot() internal pure returns (bytes32) {
        return bytes32(OWNER_SLOT);
    }

    function feeRecipientSlot() internal pure returns (bytes32) {
        return bytes32(FEE_RECIPIENT_SLOT);
    }

    function positionSupplySharesSlot(Id id, address user) internal pure returns (bytes32) {
        return bytes32(
            uint256(keccak256(abi.encode(user, keccak256(abi.encode(id, POSITION_SLOT))))) + SUPPLY_SHARES_OFFSET
        );
    }

    function positionBorrowSharesAndCollateralSlot(Id id, address user) internal pure returns (bytes32) {
        return bytes32(
            uint256(keccak256(abi.encode(user, keccak256(abi.encode(id, POSITION_SLOT)))))
                + BORROW_SHARES_AND_COLLATERAL_OFFSET
        );
    }

    function marketTotalSupplyAssetsAndSharesSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, MARKET_SLOT))) + TOTAL_SUPPLY_ASSETS_AND_SHARES_OFFSET);
    }

    function marketTotalBorrowAssetsAndSharesSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, MARKET_SLOT))) + TOTAL_BORROW_ASSETS_AND_SHARES_OFFSET);
    }

    function marketLastUpdateAndFeeSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, MARKET_SLOT))) + LAST_UPDATE_AND_FEE_OFFSET);
    }

    function isIrmEnabledSlot(address irm) internal pure returns (bytes32) {
        return keccak256(abi.encode(irm, IS_IRM_ENABLED_SLOT));
    }

    function isLltvEnabledSlot(uint256 lltv) internal pure returns (bytes32) {
        return keccak256(abi.encode(lltv, IS_LLTV_ENABLED_SLOT));
    }

    function isAuthorizedSlot(address authorizer, address authorizee) internal pure returns (bytes32) {
        return keccak256(abi.encode(authorizee, keccak256(abi.encode(authorizer, IS_AUTHORIZED_SLOT))));
    }

    function nonceSlot(address authorizer) internal pure returns (bytes32) {
        return keccak256(abi.encode(authorizer, NONCE_SLOT));
    }

    function idToLoanTokenSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, ID_TO_MARKET_PARAMS_SLOT))) + LOAN_TOKEN_OFFSET);
    }

    function idToCollateralTokenSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, ID_TO_MARKET_PARAMS_SLOT))) + COLLATERAL_TOKEN_OFFSET);
    }

    function idToOracleSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, ID_TO_MARKET_PARAMS_SLOT))) + ORACLE_OFFSET);
    }

    function idToIrmSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, ID_TO_MARKET_PARAMS_SLOT))) + IRM_OFFSET);
    }

    function idToLltvSlot(Id id) internal pure returns (bytes32) {
        return bytes32(uint256(keccak256(abi.encode(id, ID_TO_MARKET_PARAMS_SLOT))) + LLTV_OFFSET);
    }
}

File 27 of 29 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 28 of 29 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "solmate/=lib/bundler3/lib/permit2/lib/solmate/",
    "@openzeppelin/contracts/=lib/metamorpho-1.1/lib/openzeppelin-contracts/contracts/",
    "bundler3/=lib/bundler3/",
    "ds-test/=lib/metamorpho-1.1/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/metamorpho-1.1/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/bundler3/lib/permit2/lib/forge-gas-snapshot/src/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/morpho-blue/lib/halmos-cheatcodes/src/",
    "metamorpho-1.1/=lib/metamorpho-1.1/",
    "metamorpho/=lib/public-allocator/lib/metamorpho/",
    "morpho-blue-irm/=lib/morpho-blue-irm/src/",
    "morpho-blue-oracles/=lib/morpho-blue-oracles/src/",
    "morpho-blue/=lib/morpho-blue/",
    "murky/=lib/universal-rewards-distributor/lib/murky/src/",
    "openzeppelin-contracts/=lib/metamorpho-1.1/lib/openzeppelin-contracts/",
    "openzeppelin/=lib/universal-rewards-distributor/lib/openzeppelin-contracts/contracts/",
    "permit2/=lib/bundler3/lib/permit2/",
    "pre-liquidation/=lib/pre-liquidation/src/",
    "public-allocator/=lib/public-allocator/src/",
    "safe-smart-account/=lib/safe-smart-account/",
    "universal-rewards-distributor/=lib/universal-rewards-distributor/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"bundler3","type":"address"},{"internalType":"address","name":"morpho","type":"address"},{"internalType":"address","name":"augustusRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AdapterAddress","type":"error"},{"inputs":[],"name":"BuyAmountTooLow","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidAugustus","type":"error"},{"inputs":[],"name":"InvalidOffset","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SellAmountTooHigh","type":"error"},{"inputs":[],"name":"UnauthorizedSender","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"inputs":[],"name":"AUGUSTUS_REGISTRY","outputs":[{"internalType":"contract IAugustusRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BUNDLER3","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MORPHO","outputs":[{"internalType":"contract IMorpho","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"augustus","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"address","name":"srcToken","type":"address"},{"internalType":"address","name":"destToken","type":"address"},{"internalType":"uint256","name":"newDestAmount","type":"uint256"},{"components":[{"internalType":"uint256","name":"exactAmount","type":"uint256"},{"internalType":"uint256","name":"limitAmount","type":"uint256"},{"internalType":"uint256","name":"quotedAmount","type":"uint256"}],"internalType":"struct Offsets","name":"offsets","type":"tuple"},{"internalType":"address","name":"receiver","type":"address"}],"name":"buy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"augustus","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"address","name":"srcToken","type":"address"},{"components":[{"internalType":"address","name":"loanToken","type":"address"},{"internalType":"address","name":"collateralToken","type":"address"},{"internalType":"address","name":"oracle","type":"address"},{"internalType":"address","name":"irm","type":"address"},{"internalType":"uint256","name":"lltv","type":"uint256"}],"internalType":"struct MarketParams","name":"marketParams","type":"tuple"},{"components":[{"internalType":"uint256","name":"exactAmount","type":"uint256"},{"internalType":"uint256","name":"limitAmount","type":"uint256"},{"internalType":"uint256","name":"quotedAmount","type":"uint256"}],"internalType":"struct Offsets","name":"offsets","type":"tuple"},{"internalType":"address","name":"onBehalf","type":"address"},{"internalType":"address","name":"receiver","type":"address"}],"name":"buyMorphoDebt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"erc20Transfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"nativeTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"augustus","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"address","name":"srcToken","type":"address"},{"internalType":"address","name":"destToken","type":"address"},{"internalType":"bool","name":"sellEntireBalance","type":"bool"},{"components":[{"internalType":"uint256","name":"exactAmount","type":"uint256"},{"internalType":"uint256","name":"limitAmount","type":"uint256"},{"internalType":"uint256","name":"quotedAmount","type":"uint256"}],"internalType":"struct Offsets","name":"offsets","type":"tuple"},{"internalType":"address","name":"receiver","type":"address"}],"name":"sell","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60e03461010257601f61216b38819003918201601f19168301916001600160401b0383118484101761010657808492606094604052833981010312610102576100478161011a565b9061006060406100596020840161011a565b920161011a565b916001600160a01b038116156100f3576080526001600160a01b03169081156100f3576001600160a01b03169081156100f35760c05260a05260405161203c908161012f823960805181818160c7015281816106b201528181610f90015281816110930152611702015260a05181818161073601528181611118015261166b015260c0518181816104bc01526115fd0152f35b63d92e233d60e01b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036101025756fe6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80633790767d1461168f5780633a829867146116215780633acb5624146115b357806360776d6e146114e1578063678215ac14610fb4578063a317e4b514610f46578063db8a5d09146102655763f2522bcd0361000e57346102615760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610261576100ad611840565b60243573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163303610239579073ffffffffffffffffffffffffffffffffffffffff16818115610211573082146101e9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81036101bc57504791505b8161014557005b81471061018c575f80809381935af161015c611ad0565b501561016457005b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b50477fcf479181000000000000000000000000000000000000000000000000000000005f5260045260245260445ffd5b61013e575b7f1f2a2005000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fde8b5909000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f08094908000000000000000000000000000000000000000000000000000000005f5260045ffd5b5f80fd5b34610261576101a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102615761029d611840565b60243567ffffffffffffffff8111610261576102bd903690600401611948565b6102c5611863565b60a07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9c3601126102615760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffefc36011261026157610164359173ffffffffffffffffffffffffffffffffffffffff831680930361026157610184359173ffffffffffffffffffffffffffffffffffffffff8316918284036102615760405160a0810181811067ffffffffffffffff821117610e5b57604052610385611886565b815260843573ffffffffffffffffffffffffffffffffffffffff81168103610261576020820190815260a4359073ffffffffffffffffffffffffffffffffffffffff82168203610261576040830191825260c43573ffffffffffffffffffffffffffffffffffffffff811681036102615760608401908152608084019860e4358a5260a0852060405160208101918252600260408201526040815261042b6060826118cd565b519020604051906020820192835260408201526040815261044d6060826118cd565b5190209360018501809511610abc576040998a519561046c8c886118cd565b6001875260208701907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08d013683376104a488611df2565b5273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016968c519182917f7784c685000000000000000000000000000000000000000000000000000000008352602483019060206004850152518091526044830191905f5b818110610f2d5750505090805f9203818a5afa908115610d6b575f91610e90575b506105596fffffffffffffffffffffffffffffffff91611df2565b51169460c08c602460a086209151809a81937f5c60e39a00000000000000000000000000000000000000000000000000000000835260048301525afa968715610d6b57908c92915f98610db3575b5060808801946105ca6fffffffffffffffffffffffffffffffff87511642611a61565b9687151580610d95575b80610d75575b610ae9575b505050506fffffffffffffffffffffffffffffffff93506060925083915085015116930151169160018101809111610abc57620f4240830191828411610abc57620f423f9161062d91611f41565b920191818311610abc576106499261064491611bbf565b611e7b565b9586156101c1576064359673ffffffffffffffffffffffffffffffffffffffff88168098036102615761067f90610104846119f6565b61068c6101243583611a6e565b9161069a6101043582611a6e565b9373ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001633036102395787517ffb04e17b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610a4f575f91610a81575b5015610a595785156102115784156101c15773ffffffffffffffffffffffffffffffffffffffff168751927f70a08231000000000000000000000000000000000000000000000000000000008452306004850152602084602481855afa928315610a4f575f93610a1a575b89517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015294506020856024818e5afa948515610a10575f956109dc575b505f80916108238486611c73565b60208151910182855af1610835611ad0565b90156109d457508161084c60209260249594611d92565b8951938480927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9182156109ca575f92610996575b5087517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526020816024818d5afa98891561098d57505f98610951575b506108e492916108de91611a61565b96611a61565b94116109295783106109015730036108f857005b6100189261198e565b7fb4057249000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f63d5d62e000000000000000000000000000000000000000000000000000000005f5260045ffd5b9097506020929192813d602011610985575b81610970602093836118cd565b810103126102615751969091906108e46108cf565b3d9150610963565b513d5f823e3d90fd5b9091506020813d6020116109c2575b816109b2602093836118cd565b810103126102615751908961088b565b3d91506109a5565b88513d5f823e3d90fd5b805190602001fd5b9094506020813d602011610a08575b816109f8602093836118cd565b810103126102615751935f610815565b3d91506109eb565b8a513d5f823e3d90fd5b92506020843d602011610a47575b81610a35602093836118cd565b810103126102615760249351926107d1565b3d9150610a28565b89513d5f823e3d90fd5b7f60ff36f8000000000000000000000000000000000000000000000000000000005f5260045ffd5b90506020813d602011610ab4575b81610a9c602093836118cd565b8101031261026157518015158103610261578a610766565b3d9150610a8f565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff9283809281808651169851997f8c00bf6b000000000000000000000000000000000000000000000000000000008b52511660048a01525116602488015251166044860152511660648401525160848301526fffffffffffffffffffffffffffffffff86511660a483015260208601936fffffffffffffffffffffffffffffffff85511660c48401526fffffffffffffffffffffffffffffffff8c8801948186511660e48601528160608a01511661010486015251166101248401526020836101648160a08b01956fffffffffffffffffffffffffffffffff8751166101448301525afa928315610d6b575f93610d35575b50610c5b6fffffffffffffffffffffffffffffffff93610c55610c1f670de0b6b3a7640000948789511693611f41565b610c50671bc16d674ec80000610c358380611f41565b046729a2241af62c0000610c498483611f41565b0492611bbf565b611bbf565b90611f41565b049282610c73610c6a86611f54565b82845116611e49565b16905281610c8c610c8385611f54565b82895116611e49565b16865251169081610ca2575b89818080806105df565b670de0b6b3a764000091610cb591611f41565b04610cd3816fffffffffffffffffffffffffffffffff865116611a61565b6fffffffffffffffffffffffffffffffff83511691620f42408301809311610abc5760018201809211610abc57610d25610d2a926106446fffffffffffffffffffffffffffffffff95610c6a94611f41565b611f54565b169052888080610c98565b92506020833d602011610d63575b81610d50602093836118cd565b8101031261026157915191610c5b610bef565b3d9150610d43565b8c513d5f823e3d90fd5b5073ffffffffffffffffffffffffffffffffffffffff82511615156105da565b506fffffffffffffffffffffffffffffffff858b01511615156105d4565b9250965060c0823d60c011610e88575b81610dd060c093836118cd565b81010312610261578b5160c081019281841067ffffffffffffffff851117610e5b5760a0610e4f918f958652610e0581611e2c565b8452610e1360208201611e2c565b6020850152610e23868201611e2c565b86850152610e3360608201611e2c565b6060850152610e4460808201611e2c565b608085015201611e2c565b60a0820152968e6105a7565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b3d9150610dc3565b90503d805f833e610ea181836118cd565b8101906020818303126102615780519067ffffffffffffffff821161026157019080601f8301121561026157815167ffffffffffffffff8111610e5b578d5192600582901b91610ef460208401866118cd565b845260208085019282010192831161026157602001905b828210610f1d5750505061055961053e565b8151815260209182019101610f0b565b825184528594506020938401939092019160010161051d565b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610261576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157610fec611840565b60243567ffffffffffffffff81116102615761100c903690600401611948565b611014611863565b9061101d611886565b916084359182151583036102615760607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c3601126102615761105d6118a9565b926113e5575b61106f60a43582611a6e565b61107b60c43583611a6e565b9173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163303610239576040517ffb04e17b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8816600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156112f1575f916113aa575b5015610a595773ffffffffffffffffffffffffffffffffffffffff85169384156102115783156101c15773ffffffffffffffffffffffffffffffffffffffff16604051967f70a08231000000000000000000000000000000000000000000000000000000008852306004890152602088602481855afa9788156112f1575f98611362575b5073ffffffffffffffffffffffffffffffffffffffff1697604051927f70a082310000000000000000000000000000000000000000000000000000000084523060048501526020846024818d5afa9384156112f1575f9461132e575b505f80916112368486611c73565b60208151910182855af1611248611ad0565b90156109d457508161125e602092602494611d92565b604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9081156112f1575f916112fc575b50604051967f70a082310000000000000000000000000000000000000000000000000000000088523060048901526020886024818c5afa9788156112f1575f9861095157506108e492916108de91611a61565b6040513d5f823e3d90fd5b90506020813d602011611326575b81611317602093836118cd565b8101031261026157518861129e565b3d915061130a565b9093506020813d60201161135a575b8161134a602093836118cd565b810103126102615751925f611228565b3d915061133d565b9097506020813d6020116113a2575b8161137e602093836118cd565b8101031261026157519673ffffffffffffffffffffffffffffffffffffffff6111cc565b3d9150611371565b90506020813d6020116113dd575b816113c5602093836118cd565b81010312610261575180151581036102615788611148565b3d91506113b8565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff87165afa9081156112f1575f916114af575b5060a435611457826114508386611a6e565b9285611b86565b61147a60c4356114736001848661146e858a611a6e565b611bcc565b9085611b86565b60e435908161148c575b505050611063565b60016114a0916114a79461146e8588611a6e565b9083611b86565b858080611484565b90506020813d6020116114d9575b816114ca602093836118cd565b8101031261026157518661143e565b3d91506114bd565b34610261576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157611519611840565b60243567ffffffffffffffff811161026157611539903690600401611948565b611541611863565b9061154a611886565b916084359160607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c360112610261576115816118a9565b92806115a1575b5061159560c43582611a6e565b61107b60a43583611a6e565b6115ad9060a4836119f6565b85611588565b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346102615760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610261576116c6611840565b60243573ffffffffffffffffffffffffffffffffffffffff8116908181036102615760443573ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016330361023957809280156102115730146101e9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8103611814575090506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff87165afa9081156112f1575f916117e2575b50905b816117c357005b73ffffffffffffffffffffffffffffffffffffffff610018931661198e565b90506020813d60201161180c575b816117fd602093836118cd565b810103126102615751836117b9565b3d91506117f0565b6117bc577f1f2a2005000000000000000000000000000000000000000000000000000000005f5260045ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b6044359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b6064359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b610104359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610e5b57604052565b67ffffffffffffffff8111610e5b57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b81601f820112156102615780359061195f8261190e565b9261196d60405194856118cd565b8284526020838301011161026157815f926020809301838601378301015290565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff90921660248301526044808301939093529181526119f4916119ef6064836118cd565b611aff565b565b906040813591611a1185611a0a8587611a6e565b9486611b86565b611a306020820135611a295f868961146e858b611a6e565b9086611b86565b01359081611a3f575b50505050565b5f611a5291611a589561146e8587611a6e565b91611b86565b5f808080611a39565b91908203918211610abc57565b80517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101908111610abc578211611aa857016020015190565b7f01da1572000000000000000000000000000000000000000000000000000000005f5260045ffd5b3d15611afa573d90611ae18261190e565b91611aef60405193846118cd565b82523d5f602084013e565b606090565b905f602091828151910182855af1156112f1575f513d611b7d575073ffffffffffffffffffffffffffffffffffffffff81163b155b611b3b5750565b73ffffffffffffffffffffffffffffffffffffffff907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415611b34565b80517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101908111610abc578211611aa8570160200152565b91908201809211610abc57565b9291611bd9818386611e85565b926004811015611c46576001809116149182611c02575b5050611bff9250151590611bbf565b90565b9080925015611c1957611bff930915155f80611bf0565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b6040519060205f73ffffffffffffffffffffffffffffffffffffffff828501957f095ea7b300000000000000000000000000000000000000000000000000000000875216948560248601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff604486015260448552611cf36064866118cd565b84519082855af15f513d82611d60575b505015611d0f57505050565b6119ef6119f493604051907f095ea7b300000000000000000000000000000000000000000000000000000000602083015260248201525f604482015260448152611d5a6064826118cd565b82611aff565b909150611d8a575073ffffffffffffffffffffffffffffffffffffffff81163b15155b5f80611d03565b600114611d83565b6040519060205f73ffffffffffffffffffffffffffffffffffffffff828501957f095ea7b3000000000000000000000000000000000000000000000000000000008752169485602486015281604486015260448552611cf36064866118cd565b805115611dff5760200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b51906fffffffffffffffffffffffffffffffff8216820361026157565b906fffffffffffffffffffffffffffffffff809116911601906fffffffffffffffffffffffffffffffff8211610abc57565b8115611c19570490565b91818302917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81850993838086109503948086039514611f345784831115611f1c5790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b505090611bff9250611e7b565b81810292918115918404141715610abc57565b604051611f626040826118cd565b6014815260208101907f6d61782075696e7431323820657863656564656400000000000000000000000082526fffffffffffffffffffffffffffffffff8311611fbc5750506fffffffffffffffffffffffffffffffff1690565b6044907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f6040519485937f08c379a0000000000000000000000000000000000000000000000000000000008552602060048601525180918160248701528686015e5f85828601015201168101030190fdfea164736f6c634300081c000a0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc30000000000000000000000008f5ae9cddb9f68de460c77730b018ae7e04a140a000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6

Deployed Bytecode

0x6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80633790767d1461168f5780633a829867146116215780633acb5624146115b357806360776d6e146114e1578063678215ac14610fb4578063a317e4b514610f46578063db8a5d09146102655763f2522bcd0361000e57346102615760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610261576100ad611840565b60243573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc3163303610239579073ffffffffffffffffffffffffffffffffffffffff16818115610211573082146101e9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81036101bc57504791505b8161014557005b81471061018c575f80809381935af161015c611ad0565b501561016457005b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b50477fcf479181000000000000000000000000000000000000000000000000000000005f5260045260245260445ffd5b61013e575b7f1f2a2005000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fde8b5909000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f08094908000000000000000000000000000000000000000000000000000000005f5260045ffd5b5f80fd5b34610261576101a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102615761029d611840565b60243567ffffffffffffffff8111610261576102bd903690600401611948565b6102c5611863565b60a07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9c3601126102615760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffefc36011261026157610164359173ffffffffffffffffffffffffffffffffffffffff831680930361026157610184359173ffffffffffffffffffffffffffffffffffffffff8316918284036102615760405160a0810181811067ffffffffffffffff821117610e5b57604052610385611886565b815260843573ffffffffffffffffffffffffffffffffffffffff81168103610261576020820190815260a4359073ffffffffffffffffffffffffffffffffffffffff82168203610261576040830191825260c43573ffffffffffffffffffffffffffffffffffffffff811681036102615760608401908152608084019860e4358a5260a0852060405160208101918252600260408201526040815261042b6060826118cd565b519020604051906020820192835260408201526040815261044d6060826118cd565b5190209360018501809511610abc576040998a519561046c8c886118cd565b6001875260208701907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08d013683376104a488611df2565b5273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000008f5ae9cddb9f68de460c77730b018ae7e04a140a16968c519182917f7784c685000000000000000000000000000000000000000000000000000000008352602483019060206004850152518091526044830191905f5b818110610f2d5750505090805f9203818a5afa908115610d6b575f91610e90575b506105596fffffffffffffffffffffffffffffffff91611df2565b51169460c08c602460a086209151809a81937f5c60e39a00000000000000000000000000000000000000000000000000000000835260048301525afa968715610d6b57908c92915f98610db3575b5060808801946105ca6fffffffffffffffffffffffffffffffff87511642611a61565b9687151580610d95575b80610d75575b610ae9575b505050506fffffffffffffffffffffffffffffffff93506060925083915085015116930151169160018101809111610abc57620f4240830191828411610abc57620f423f9161062d91611f41565b920191818311610abc576106499261064491611bbf565b611e7b565b9586156101c1576064359673ffffffffffffffffffffffffffffffffffffffff88168098036102615761067f90610104846119f6565b61068c6101243583611a6e565b9161069a6101043582611a6e565b9373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc31633036102395787517ffb04e17b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6165afa908115610a4f575f91610a81575b5015610a595785156102115784156101c15773ffffffffffffffffffffffffffffffffffffffff168751927f70a08231000000000000000000000000000000000000000000000000000000008452306004850152602084602481855afa928315610a4f575f93610a1a575b89517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015294506020856024818e5afa948515610a10575f956109dc575b505f80916108238486611c73565b60208151910182855af1610835611ad0565b90156109d457508161084c60209260249594611d92565b8951938480927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9182156109ca575f92610996575b5087517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526020816024818d5afa98891561098d57505f98610951575b506108e492916108de91611a61565b96611a61565b94116109295783106109015730036108f857005b6100189261198e565b7fb4057249000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f63d5d62e000000000000000000000000000000000000000000000000000000005f5260045ffd5b9097506020929192813d602011610985575b81610970602093836118cd565b810103126102615751969091906108e46108cf565b3d9150610963565b513d5f823e3d90fd5b9091506020813d6020116109c2575b816109b2602093836118cd565b810103126102615751908961088b565b3d91506109a5565b88513d5f823e3d90fd5b805190602001fd5b9094506020813d602011610a08575b816109f8602093836118cd565b810103126102615751935f610815565b3d91506109eb565b8a513d5f823e3d90fd5b92506020843d602011610a47575b81610a35602093836118cd565b810103126102615760249351926107d1565b3d9150610a28565b89513d5f823e3d90fd5b7f60ff36f8000000000000000000000000000000000000000000000000000000005f5260045ffd5b90506020813d602011610ab4575b81610a9c602093836118cd565b8101031261026157518015158103610261578a610766565b3d9150610a8f565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff9283809281808651169851997f8c00bf6b000000000000000000000000000000000000000000000000000000008b52511660048a01525116602488015251166044860152511660648401525160848301526fffffffffffffffffffffffffffffffff86511660a483015260208601936fffffffffffffffffffffffffffffffff85511660c48401526fffffffffffffffffffffffffffffffff8c8801948186511660e48601528160608a01511661010486015251166101248401526020836101648160a08b01956fffffffffffffffffffffffffffffffff8751166101448301525afa928315610d6b575f93610d35575b50610c5b6fffffffffffffffffffffffffffffffff93610c55610c1f670de0b6b3a7640000948789511693611f41565b610c50671bc16d674ec80000610c358380611f41565b046729a2241af62c0000610c498483611f41565b0492611bbf565b611bbf565b90611f41565b049282610c73610c6a86611f54565b82845116611e49565b16905281610c8c610c8385611f54565b82895116611e49565b16865251169081610ca2575b89818080806105df565b670de0b6b3a764000091610cb591611f41565b04610cd3816fffffffffffffffffffffffffffffffff865116611a61565b6fffffffffffffffffffffffffffffffff83511691620f42408301809311610abc5760018201809211610abc57610d25610d2a926106446fffffffffffffffffffffffffffffffff95610c6a94611f41565b611f54565b169052888080610c98565b92506020833d602011610d63575b81610d50602093836118cd565b8101031261026157915191610c5b610bef565b3d9150610d43565b8c513d5f823e3d90fd5b5073ffffffffffffffffffffffffffffffffffffffff82511615156105da565b506fffffffffffffffffffffffffffffffff858b01511615156105d4565b9250965060c0823d60c011610e88575b81610dd060c093836118cd565b81010312610261578b5160c081019281841067ffffffffffffffff851117610e5b5760a0610e4f918f958652610e0581611e2c565b8452610e1360208201611e2c565b6020850152610e23868201611e2c565b86850152610e3360608201611e2c565b6060850152610e4460808201611e2c565b608085015201611e2c565b60a0820152968e6105a7565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b3d9150610dc3565b90503d805f833e610ea181836118cd565b8101906020818303126102615780519067ffffffffffffffff821161026157019080601f8301121561026157815167ffffffffffffffff8111610e5b578d5192600582901b91610ef460208401866118cd565b845260208085019282010192831161026157602001905b828210610f1d5750505061055961053e565b8151815260209182019101610f0b565b825184528594506020938401939092019160010161051d565b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc3168152f35b34610261576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157610fec611840565b60243567ffffffffffffffff81116102615761100c903690600401611948565b611014611863565b9061101d611886565b916084359182151583036102615760607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c3601126102615761105d6118a9565b926113e5575b61106f60a43582611a6e565b61107b60c43583611a6e565b9173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc3163303610239576040517ffb04e17b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8816600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6165afa9081156112f1575f916113aa575b5015610a595773ffffffffffffffffffffffffffffffffffffffff85169384156102115783156101c15773ffffffffffffffffffffffffffffffffffffffff16604051967f70a08231000000000000000000000000000000000000000000000000000000008852306004890152602088602481855afa9788156112f1575f98611362575b5073ffffffffffffffffffffffffffffffffffffffff1697604051927f70a082310000000000000000000000000000000000000000000000000000000084523060048501526020846024818d5afa9384156112f1575f9461132e575b505f80916112368486611c73565b60208151910182855af1611248611ad0565b90156109d457508161125e602092602494611d92565b604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9081156112f1575f916112fc575b50604051967f70a082310000000000000000000000000000000000000000000000000000000088523060048901526020886024818c5afa9788156112f1575f9861095157506108e492916108de91611a61565b6040513d5f823e3d90fd5b90506020813d602011611326575b81611317602093836118cd565b8101031261026157518861129e565b3d915061130a565b9093506020813d60201161135a575b8161134a602093836118cd565b810103126102615751925f611228565b3d915061133d565b9097506020813d6020116113a2575b8161137e602093836118cd565b8101031261026157519673ffffffffffffffffffffffffffffffffffffffff6111cc565b3d9150611371565b90506020813d6020116113dd575b816113c5602093836118cd565b81010312610261575180151581036102615788611148565b3d91506113b8565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff87165afa9081156112f1575f916114af575b5060a435611457826114508386611a6e565b9285611b86565b61147a60c4356114736001848661146e858a611a6e565b611bcc565b9085611b86565b60e435908161148c575b505050611063565b60016114a0916114a79461146e8588611a6e565b9083611b86565b858080611484565b90506020813d6020116114d9575b816114ca602093836118cd565b8101031261026157518661143e565b3d91506114bd565b34610261576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157611519611840565b60243567ffffffffffffffff811161026157611539903690600401611948565b611541611863565b9061154a611886565b916084359160607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c360112610261576115816118a9565b92806115a1575b5061159560c43582611a6e565b61107b60a43583611a6e565b6115ad9060a4836119f6565b85611588565b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000008f5ae9cddb9f68de460c77730b018ae7e04a140a168152f35b34610261575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261026157602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6168152f35b346102615760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610261576116c6611840565b60243573ffffffffffffffffffffffffffffffffffffffff8116908181036102615760443573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc316330361023957809280156102115730146101e9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8103611814575090506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff87165afa9081156112f1575f916117e2575b50905b816117c357005b73ffffffffffffffffffffffffffffffffffffffff610018931661198e565b90506020813d60201161180c575b816117fd602093836118cd565b810103126102615751836117b9565b3d91506117f0565b6117bc577f1f2a2005000000000000000000000000000000000000000000000000000000005f5260045ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b6044359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b6064359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b610104359073ffffffffffffffffffffffffffffffffffffffff8216820361026157565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610e5b57604052565b67ffffffffffffffff8111610e5b57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b81601f820112156102615780359061195f8261190e565b9261196d60405194856118cd565b8284526020838301011161026157815f926020809301838601378301015290565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff90921660248301526044808301939093529181526119f4916119ef6064836118cd565b611aff565b565b906040813591611a1185611a0a8587611a6e565b9486611b86565b611a306020820135611a295f868961146e858b611a6e565b9086611b86565b01359081611a3f575b50505050565b5f611a5291611a589561146e8587611a6e565b91611b86565b5f808080611a39565b91908203918211610abc57565b80517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101908111610abc578211611aa857016020015190565b7f01da1572000000000000000000000000000000000000000000000000000000005f5260045ffd5b3d15611afa573d90611ae18261190e565b91611aef60405193846118cd565b82523d5f602084013e565b606090565b905f602091828151910182855af1156112f1575f513d611b7d575073ffffffffffffffffffffffffffffffffffffffff81163b155b611b3b5750565b73ffffffffffffffffffffffffffffffffffffffff907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415611b34565b80517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101908111610abc578211611aa8570160200152565b91908201809211610abc57565b9291611bd9818386611e85565b926004811015611c46576001809116149182611c02575b5050611bff9250151590611bbf565b90565b9080925015611c1957611bff930915155f80611bf0565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b6040519060205f73ffffffffffffffffffffffffffffffffffffffff828501957f095ea7b300000000000000000000000000000000000000000000000000000000875216948560248601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff604486015260448552611cf36064866118cd565b84519082855af15f513d82611d60575b505015611d0f57505050565b6119ef6119f493604051907f095ea7b300000000000000000000000000000000000000000000000000000000602083015260248201525f604482015260448152611d5a6064826118cd565b82611aff565b909150611d8a575073ffffffffffffffffffffffffffffffffffffffff81163b15155b5f80611d03565b600114611d83565b6040519060205f73ffffffffffffffffffffffffffffffffffffffff828501957f095ea7b3000000000000000000000000000000000000000000000000000000008752169485602486015281604486015260448552611cf36064866118cd565b805115611dff5760200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b51906fffffffffffffffffffffffffffffffff8216820361026157565b906fffffffffffffffffffffffffffffffff809116911601906fffffffffffffffffffffffffffffffff8211610abc57565b8115611c19570490565b91818302917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81850993838086109503948086039514611f345784831115611f1c5790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b505090611bff9250611e7b565b81810292918115918404141715610abc57565b604051611f626040826118cd565b6014815260208101907f6d61782075696e7431323820657863656564656400000000000000000000000082526fffffffffffffffffffffffffffffffff8311611fbc5750506fffffffffffffffffffffffffffffffff1690565b6044907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f6040519485937f08c379a0000000000000000000000000000000000000000000000000000000008552602060048601525180918160248701528686015e5f85828601015201168101030190fdfea164736f6c634300081c000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc30000000000000000000000008f5ae9cddb9f68de460c77730b018ae7e04a140a000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6

-----Decoded View---------------
Arg [0] : bundler3 (address): 0x7DD85759182495AF7F6757DA75036d24A9B58bc3
Arg [1] : morpho (address): 0x8f5ae9CddB9f68de460C77730b018Ae7E04a140A
Arg [2] : augustusRegistry (address): 0xB5253c895361678FF5D0fFDdA81Dd02f1F7a81D6

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000007dd85759182495af7f6757da75036d24a9b58bc3
Arg [1] : 0000000000000000000000008f5ae9cddb9f68de460c77730b018ae7e04a140a
Arg [2] : 000000000000000000000000b5253c895361678ff5d0ffdda81dd02f1f7a81d6


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.