ETH Price: $2,891.48 (-1.69%)

Contract

0x795Dcb58d1cd4789169D5F938Ea05E17ecEB68cA
Transaction Hash
Block
From
To
Redeem248751462025-08-19 17:11:45159 days ago1755623505IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100047
Redeem246636122025-08-17 6:26:11162 days ago1755411971IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000050.00100028
Initiate245481182025-08-15 22:21:17163 days ago1755296477IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000180.00100031
Redeem244912142025-08-15 6:32:53164 days ago1755239573IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100033
Redeem244760572025-08-15 2:20:16164 days ago1755224416IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100029
Initiate244449342025-08-14 17:41:33164 days ago1755193293IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000190.00100032
Initiate244264542025-08-14 12:33:33164 days ago1755174813IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000190.00100051
Redeem244240082025-08-14 11:52:47164 days ago1755172367IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100029
Redeem243993152025-08-14 5:01:14165 days ago1755147674IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100031
Redeem243410282025-08-13 12:49:47165 days ago1755089387IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100033
Redeem243406402025-08-13 12:43:19165 days ago1755088999IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100031
Redeem242863652025-08-12 21:38:44166 days ago1755034724IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000070.00100029
Redeem242855482025-08-12 21:25:07166 days ago1755033907IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100029
Redeem242463082025-08-12 10:31:07166 days ago1754994667IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100032
Redeem242398022025-08-12 8:42:41167 days ago1754988161IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100033
Redeem241912622025-08-11 19:13:41167 days ago1754939621IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100032
Redeem241123432025-08-10 21:18:22168 days ago1754860702IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100036
Redeem241083812025-08-10 20:12:20168 days ago1754856740IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100038
Redeem240845562025-08-10 13:35:15168 days ago1754832915IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100036
Redeem240782002025-08-10 11:49:19168 days ago1754826559IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100034
Redeem240768222025-08-10 11:26:21168 days ago1754825181IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000050.00100034
Redeem240741022025-08-10 10:41:01168 days ago1754822461IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100033
Redeem240588182025-08-10 6:26:17169 days ago1754807177IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100034
Initiate239882542025-08-09 10:50:13169 days ago1754736613IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000190.00100041
Redeem239235122025-08-08 16:51:11170 days ago1754671871IN
0x795Dcb58...7ecEB68cA
0 ETH0.000000060.00100032
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
HTLC

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

/**
 * @author  Garden Finance
 * @title   HTLC smart contract for atomic swaps
 * @notice  Any signer can create an order to serve as one of either halfs of an cross chain
 *          atomic swap for any user with respective valid signatures.
 * @dev     The contracts can be used to create an order to serve as the the commitment for two
 *          types of users :
 *          Initiator functions: 1. initate
 *                               2. refund
 *          Redeemer function: 1. redeem
 */
contract HTLC is EIP712 {
    using SafeERC20 for IERC20;
    using ECDSA for bytes32;

    struct Order {
        bool isFulfilled;
        address initiator;
        address redeemer;
        uint256 initiatedAt;
        uint256 timelock;
        uint256 amount;
    }

    IERC20 public immutable token;

    mapping(bytes32 => Order) public orders;

    bytes32 private constant _INITIATE_TYPEHASH =
        keccak256("Initiate(address redeemer,uint256 timelock,uint256 amount,bytes32 secretHash)");

    bytes32 private constant _REFUND_TYPEHASH = keccak256("Refund(bytes32 orderId)");

    event Initiated(bytes32 indexed orderID, bytes32 indexed secretHash, uint256 amount);
    event Redeemed(bytes32 indexed orderID, bytes32 indexed secretHash, bytes secret);
    event Refunded(bytes32 indexed orderID);

    /**
     * @notice  .
     * @dev     provides checks to ensure
     *              1. redeemer is not null address
     *              3. timelock is greater than 0
     *              4. amount is not zero
     * @param   redeemer  public address of the reedeem
     * @param   timelock  timelock in period for the htlc order
     * @param   amount  amount of tokens to trade
     */
    modifier safeParams(
        address redeemer,
        uint256 timelock,
        uint256 amount
    ) {
        require(redeemer != address(0), "HTLC: zero address redeemer");
        require(timelock > 0, "HTLC: zero timelock");
        require(amount > 0, "HTLC: zero amount");
        _;
    }

    constructor(address token_, string memory name, string memory version) EIP712(name, version) {
        token = IERC20(token_);
    }

    /**
     * @notice  Signers can create an order with order params
     * @dev     Secret used to generate secret hash for iniatiation should be generated randomly
     *          and sha256 hash should be used to support hashing methods on other non-evm chains.
     *          Signers cannot generate orders with same secret hash or override an existing order.
     * @param   redeemer  public address of the redeemer
     * @param   timelock  timelock in period for the htlc order
     * @param   amount  amount of tokens to trade
     * @param   secretHash  sha256 hash of the secret used for redemtion
     **/
    function initiate(
        address redeemer,
        uint256 timelock,
        uint256 amount,
        bytes32 secretHash
    ) external safeParams(redeemer, timelock, amount) {
        _initiate(msg.sender, redeemer, timelock, amount, secretHash);
    }

    /**
     * @notice  Signers can create an order with order params and signature for a user
     * @dev     Secret used to generate secret hash for iniatiation should be generated randomly
     *          and sha256 hash should be used to support hashing methods on other non-evm chains.
     *          Signers cannot generate orders with same secret hash or override an existing order.
     * @param   redeemer  public address of the redeemer
     * @param   timelock  timelock in period for the htlc order
     * @param   amount  amount of tokens to trade
     * @param   secretHash  sha256 hash of the secret used for redemtion
     * @param   signature  EIP712 signature provided by authorized user for iniatiation. user will be assigned as initiator
     **/
    function initiateWithSignature(
        address redeemer,
        uint256 timelock,
        uint256 amount,
        bytes32 secretHash,
        bytes calldata signature
    ) external safeParams(redeemer, timelock, amount) {
        address initiator = _hashTypedDataV4(
            keccak256(abi.encode(_INITIATE_TYPEHASH, redeemer, timelock, amount, secretHash))
        ).recover(signature);

        _initiate(initiator, redeemer, timelock, amount, secretHash);
    }

    /**
     * @notice  Signers with correct secret to an order's secret hash can redeem to claim the locked
     *          token
     * @dev     Signers are not allowed to redeem an order with wrong secret or redeem the same order
     *          multiple times
     * @param   orderID  orderIds if the htlc order
     * @param   secret  secret used to redeem an order
     */
    function redeem(bytes32 orderID, bytes calldata secret) external {
        Order storage order = orders[orderID];

        require(order.redeemer != address(0x0), "HTLC: order not initiated");
        require(!order.isFulfilled, "HTLC: order fulfilled");

        bytes32 secretHash = sha256(secret);

        require(sha256(abi.encode(block.chainid, secretHash, order.initiator)) == orderID, "HTLC: incorrect secret");

        order.isFulfilled = true;

        emit Redeemed(orderID, secretHash, secret);

        token.safeTransfer(order.redeemer, order.amount);
    }

    /**
     * @notice  Signers can refund the locked assets after timelock block number
     * @dev     Signers cannot refund the an order before epiry block number or refund the same order
     *          multiple times.
     *          Funds will be SafeTransferred to the initiator.
     * @param   orderID  orderId of the htlc order
     */
    function refund(bytes32 orderID) external {
        Order storage order = orders[orderID];

        require(order.redeemer != address(0), "HTLC: order not initiated");
        require(!order.isFulfilled, "HTLC: order fulfilled");
        require(order.initiatedAt + order.timelock < block.number, "HTLC: order not expired");

        order.isFulfilled = true;

        emit Refunded(orderID);

        token.safeTransfer(order.initiator, order.amount);
    }

    /**
     * @notice  Internal function to initiate an order for an atomic swap
     * @dev     This function is called internally to create a new order for an atomic swap.
     *          It checks that the initiator and redeemer addresses are different and that there is no duplicate order.
     *          It creates a new order with the provided parameters and stores it in the 'orders' mapping.
     *          It emits an 'Initiated' event with the order ID, secret hash, and amount.
     *          It transfers the specified amount of tokens from the initiator to the contract address.
     * @param   initiator_  The address of the initiator of the atomic swap
     * @param   redeemer_   The address of the redeemer of the atomic swap
     * @param   secretHash_ The hash of the secret used for redemption
     * @param   timelock_     The timelock block number for the atomic swap
     * @param   amount_     The amount of tokens to be traded in the atomic swap
     */
    function _initiate(
        address initiator_,
        address redeemer_,
        uint256 timelock_,
        uint256 amount_,
        bytes32 secretHash_
    ) internal {
        require(initiator_ != redeemer_, "HTLC: same initiator and redeemer");

        bytes32 orderID = sha256(abi.encode(block.chainid, secretHash_, initiator_));
        Order memory order = orders[orderID];

        require(order.redeemer == address(0), "HTLC: duplicate order");

        Order memory newOrder = Order({
            isFulfilled: false,
            initiator: initiator_,
            redeemer: redeemer_,
            initiatedAt: block.number,
            timelock: timelock_,
            amount: amount_
        });
        orders[orderID] = newOrder;

        emit Initiated(orderID, secretHash_, orders[orderID].amount);

        token.safeTransferFrom(initiator_, address(this), orders[orderID].amount);
    }

    /**
     * @notice  Redeemers can let initiator refund the locked assets before expiry block number
     * @dev     Signers cannot refund the the same order multiple times.
     *          Funds will be SafeTransferred to the initiator.
     *
     * @param orderID       orderID of the htlc order
     * @param signature     EIP712 signature provided by redeemer for instant refund.
     */
    function instantRefund(bytes32 orderID, bytes calldata signature) external {
        address redeemer = _hashTypedDataV4(keccak256(abi.encode(_REFUND_TYPEHASH, orderID))).recover(signature);
        Order storage order = orders[orderID];

        require(order.redeemer == redeemer, "HTLC: invalid redeemer signature");
        require(!order.isFulfilled, "HTLC: order fulfilled");

        order.isFulfilled = true;

        emit Refunded(orderID);

        token.safeTransfer(order.initiator, order.amount);
    }
}

File 2 of 51 : IERC5267Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267Upgradeable {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library ClonesUpgradeable {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../StringsUpgradeable.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSAUpgradeable.sol";
import "../../interfaces/IERC5267Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:storage-size 52
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:oz-renamed-from _HASHED_NAME
    bytes32 private _hashedName;
    /// @custom:oz-renamed-from _HASHED_VERSION
    bytes32 private _hashedVersion;

    string private _name;
    string private _version;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        _name = name;
        _version = version;

        // Reset prior values in storage if upgrading
        _hashedName = 0;
        _hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal virtual view returns (string memory) {
        return _name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal virtual view returns (string memory) {
        return _version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = _hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = _hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[48] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMathUpgradeable {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";
import "./math/SignedMathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 16 of 51 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20.sol";

File 17 of 51 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.0;

import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
    using Address for address;
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to owner address
    mapping(uint256 => address) private _owners;

    // Mapping owner address to token count
    mapping(address => uint256) private _balances;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        address owner = _ownerOf(tokenId);
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireMinted(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not token owner or approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
        _safeTransfer(from, to, tokenId, data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _ownerOf(tokenId) != address(0);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId, 1);

        // Check that tokenId was not minted by `_beforeTokenTransfer` hook
        require(!_exists(tokenId), "ERC721: token already minted");

        unchecked {
            // Will not overflow unless all 2**256 token ids are minted to the same owner.
            // Given that tokens are minted one by one, it is impossible in practice that
            // this ever happens. Might change if we allow batch minting.
            // The ERC fails to describe this case.
            _balances[to] += 1;
        }

        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId, 1);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId, 1);

        // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
        owner = ERC721.ownerOf(tokenId);

        // Clear approvals
        delete _tokenApprovals[tokenId];

        unchecked {
            // Cannot overflow, as that would require more tokens to be burned/transferred
            // out than the owner initially received through minting and transferring in.
            _balances[owner] -= 1;
        }
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId, 1);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId, 1);

        // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");

        // Clear approvals from the previous owner
        delete _tokenApprovals[tokenId];

        unchecked {
            // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
            // `from`'s balance is the number of token held, which is at least one before the current
            // transfer.
            // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
            // all 2**256 token ids to be minted, which in practice is impossible.
            _balances[from] -= 1;
            _balances[to] += 1;
        }
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId, 1);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` has not been minted yet.
     */
    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (to.isContract()) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
     * - When `from` is zero, the tokens will be minted for `to`.
     * - When `to` is zero, ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
     * - When `from` is zero, the tokens were minted for `to`.
     * - When `to` is zero, ``from``'s tokens were burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
     * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
     * that `ownerOf(tokenId)` is `a`.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __unsafe_increaseBalance(address account, uint256 amount) internal {
        _balances[account] += amount;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 26 of 51 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";

interface IFeeAccountFactory {
    function closed(address recipient) external;

    function claimed(address recipient, uint256 amount, uint256 nonce, uint256 expiration) external;
}

/**
 * @title FeeAccount
 * @author Garden Finance
 * @notice The FeeAccount contract is used to manage the funds of a channel between a funder and a recipient.
 * It allows the funder and recipient to close the channel and claim the funds.
 * It also allows the recipient to settle the channel.
 * @dev A templete of contract is deployed by the factory.
 * Clones are created by the factory.
 */
contract FeeAccount is EIP712Upgradeable {
    using ECDSAUpgradeable for bytes32;
    using SafeERC20Upgradeable for IERC20Upgradeable;

    struct HTLC {
        bytes32 secretHash;
        uint256 expiry;
        uint256 sendAmount;
        uint256 recieveAmount;
    }

    bytes32 private constant CLOSE_TYPEHASH = keccak256("Close(uint256 amount)");

    bytes32 private constant CLAIM_HTLC_TYPEHASH =
        keccak256(
            abi.encodePacked(
                "Claim(uint256 nonce,uint256 amount,HTLC[] htlcs)",
                "HTLC(bytes32 secretHash,uint256 expiry,uint256 sendAmount,uint256 recieveAmount)"
            )
        );

    bytes32 private constant HTLC_TYPEHASH =
        keccak256("HTLC(bytes32 secretHash,uint256 expiry,uint256 sendAmount,uint256 recieveAmount)");

    // Are set when the channel is created
    IERC20Upgradeable public token;
    address public funder;
    address public recipient;
    IFeeAccountFactory public factory;

    // Are set when a claim is made
    uint256 public amount;
    uint256 public nonce;
    uint256 public expiration;

    mapping(bytes => uint256) public secretsClaimed;
    mapping(bytes32 => bytes) public secrets;

    uint256 private constant TWO_DAYS = 2 * 7200;

    constructor() {
        _disableInitializers();
    }

    function __FeeAccount_init(
        IERC20Upgradeable token_,
        address funder_,
        address recipient_,
        string memory feeAccountName,
        string memory feeAccountVersion
    ) external initializer {
        __EIP712_init_unchained(feeAccountName, feeAccountVersion);
        __FeeAccount_init_unchained(token_, funder_, recipient_);
    }

    function __FeeAccount_init_unchained(
        IERC20Upgradeable token_,
        address funder_,
        address recipient_
    ) internal onlyInitializing {
        require(address(token_) != address(0), "FeeAccount: token is zero address");
        require(funder_ != address(0), "FeeAccount: funder is zero address");
        require(recipient_ != address(0), "FeeAccount: recipient is zero address");

        token = token_;
        funder = funder_;
        recipient = recipient_;
        factory = IFeeAccountFactory(msg.sender);
    }

    /**
     * @notice Allows a participant to close the channel and claim their funds.
     *          - The amount_ is sent to the recipient.
     *          - The remaining amount is sent to the funder.
     * @dev The funder and recipient must sign the close message.
     * @param amount_ The amount of tokens to be closed with.
     * @param funderSig THe sinaure of the funder for the close message.
     * @param recipientSig The signature of the recipient for the close message.
     */
    function close(uint256 amount_, bytes memory funderSig, bytes memory recipientSig) external {
        bytes32 id = _hashTypedDataV4(keccak256(abi.encode(CLOSE_TYPEHASH, amount_)));
        address funderSigner = id.recover(funderSig);
        address recipientSigner = id.recover(recipientSig);

        require(funderSigner == funder, "FeeAccount: invalid funder signature");
        require(recipientSigner == recipient, "FeeAccount: invalid recipient signature");

        closeChannel(amount_);
    }

    /**
     * @notice Allows a participant to claim funds from the FeeAccount.
     *          - The claim can only be made if the provided secrets match the corresponding HTLCs and the amount is valid.
     *          - The amount is updated to the new amount.
     *          - The nonce is updated to the new nonce.
     *          - The funder and recipient must sign the claim message.
     *          - The expiration is updated to the current block number plus two days.
     *          - The secretsProvided is updated to the number of secrets provided.
     *          - A claim can be overrided by a new claim with the same nonce and more secrets.
     *          - A claim can be overrided by a new claim with the higher nonce.
     * @param amount_ The amount of tokens to be claimed.
     * @param nonce_ The nonce value for the claim message.
     * @param htlcs The array of HTLCs in the claim.
     * @param secrets_ The array of secrets corresponding to the HTLCs.
     * @param funderSig The signature of the funder for the claim message.
     * @param recipientSig The signature of the recipient for the claim message.
     */
    function claim(
        uint256 amount_,
        uint256 nonce_,
        HTLC[] memory htlcs,
        bytes[] memory secrets_,
        bytes memory funderSig,
        bytes memory recipientSig
    ) external {
        require(htlcs.length == secrets_.length, "FeeAccount: invalid input");
        require(!(htlcs.length > 0 && nonce_ == 0), "FeeAccount: zero nonce claim cannot contain htlcs");
        bytes32 claimID = claimHash(amount_, nonce_, htlcs);

        if (nonce == nonce_ && expiration != 0) {
            amount_ = amount;
        }

        bool secretsProcessed = false;

        for (uint256 i = 0; i < htlcs.length; i++) {
            if (secretsClaimed[secrets[htlcs[i].secretHash]] > 0) {
                if (secretsClaimed[secrets[htlcs[i].secretHash]] != nonce_) {
                    secretsProcessed = true;
                    secretsClaimed[secrets[htlcs[i].secretHash]] = nonce_;
                    amount_ += htlcs[i].sendAmount;
                    amount_ -= htlcs[i].recieveAmount;
                }
                continue;
            }
            if (htlcs[i].expiry > block.number && sha256(secrets_[i]) == htlcs[i].secretHash) {
                secretsProcessed = true;
                secretsClaimed[secrets_[i]] = nonce_;
                secrets[htlcs[i].secretHash] = secrets_[i];
                amount_ += htlcs[i].sendAmount;
                amount_ -= htlcs[i].recieveAmount;
            }
        }

        require(amount_ <= totalAmount(), "FeeAccount: invalid amount");
        if (expiration != 0) {
            // a claim exists, so should satisfy override conditions
            require(nonce_ > nonce || (nonce_ == nonce && secretsProcessed), "FeeAccount: override conditions not met");
        }

        // verify funder and recipient signatures
        address funderSigner = claimID.recover(funderSig);
        address recipientSigner = claimID.recover(recipientSig);
        require(funderSigner == funder, "FeeAccount: invalid funder signature");
        require(recipientSigner == recipient, "FeeAccount: invalid recipient signature");

        // update global claim state
        expiration = block.number + TWO_DAYS;
        amount = amount_;
        nonce = nonce_;

        factory.claimed(recipient, amount_, nonce_, expiration);
    }

    /**
     * @notice Allows the recipient to settle the FeeAccount.
     *          - The amount is sent to the recipient.
     *          - The remaining amount is sent to the funder.
     *          - The recipient can only settle the channel after the expiration block.
     */
    function settle() external {
        require(expiration > 0, "FeeAccount: no claim");
        require(expiration <= block.number, "FeeAccount: claim not expired");

        closeChannel(amount);
    }

    /**
     * @notice Returns the total amount of tokens held by the FeeAccount.
     * @return The total amount of tokens.
     */
    function totalAmount() public view returns (uint256) {
        return token.balanceOf(address(this));
    }

    /**
     * @notice Generates the hash to be signed by the participants to agree on claim messages.
     * @param amount_ The amount to be claimed.
     * @param nonce_ The nonce value for the claim.
     * @param htlcs The array of HTLCs.
     */
    function claimHash(uint256 amount_, uint256 nonce_, HTLC[] memory htlcs) public view returns (bytes32) {
        bytes32[] memory htlcHashes = new bytes32[](htlcs.length);

        for (uint256 i = 0; i < htlcs.length; i++) {
            htlcHashes[i] = keccak256(
                abi.encode(
                    HTLC_TYPEHASH,
                    htlcs[i].secretHash,
                    htlcs[i].expiry,
                    htlcs[i].sendAmount,
                    htlcs[i].recieveAmount
                )
            );
        }

        return
            _hashTypedDataV4(
                keccak256(abi.encode(CLAIM_HTLC_TYPEHASH, nonce_, amount_, keccak256(abi.encodePacked(htlcHashes))))
            );
    }

    /**
     * @notice Closes the channel and sends the funds to the recipient and funder.
     *          - Used by the close and settle functions.
     * @param amount_ The amount to be sent to the recipient.
     */
    function closeChannel(uint256 amount_) internal {
        token.safeTransfer(recipient, amount_);
        token.safeTransfer(funder, totalAmount());

        factory.closed(recipient);

        selfdestruct(payable(recipient));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/ClonesUpgradeable.sol";
import "./FeeAccount.sol";

/**
 * @title FeeAccountFactory
 * @author Garden Finance
 * @notice The FeeAccountFactory contract is used to deploy and manage the fee channels.
 * It allows the funder and recipient to create the channel.
 * @dev Name and version are set when the factory is deployed,they are to initialize the fee channel.
 * The factory deploys a template of the fee channel.
 * Clones are created by the factory.
 */
contract FeeAccountFactory {
    using ClonesUpgradeable for address;

    IERC20Upgradeable public immutable token;
    address public immutable feeManager;
    address public immutable template;

    string public feeAccountName;
    string public feeAccountVersion;

    mapping(address => uint256) public nonces;
    mapping(address => FeeAccount) public channels;

    event Claimed(address indexed channel, uint256 amount, uint256 nonce, uint256 expiration);
    event Created(address indexed funder, address indexed channel);
    event Closed(address indexed channel);

    constructor(
        IERC20Upgradeable token_,
        address feeManager_,
        string memory feeAccountName_,
        string memory feeAccountVersion_
    ) {
        require(address(token_) != address(0), "FeeAccountFactory: token is zero address");
        require(feeManager_ != address(0), "FeeAccountFactory: fee manager is zero address");

        token = token_;
        feeManager = feeManager_;

        feeAccountName = feeAccountName_;
        feeAccountVersion = feeAccountVersion_;

        FeeAccount templateFeeAccount = new FeeAccount();
        template = address(templateFeeAccount);
    }

    /**
     * @notice Create a fee channel and close it.
     * @param amount The amount of tokens to be closed with.
     * @param funderSig The signature of the funder for the close message.
     * @param recipientSig The signature of the recipient for the close message.
     */
    function createAndClose(uint256 amount, bytes memory funderSig, bytes memory recipientSig) external {
        FeeAccount channel = create();
        channel.close(amount, funderSig, recipientSig);
    }

    /**
     * @notice Create a fee channel and claim it.
     * @param amount The amount of tokens to be claimed.
     * @param nonce The nonce value of the claim message.
     * @param htlcs The array of HTLCs in the claim.
     * @param secrets The array of secrets corresponding to the HTLCs.
     * @param funderSig The signature of the funder for the claim message.
     * @param recipientSig The signature of the recipient for the claim message.
     */
    function createAndClaim(
        uint256 amount,
        uint256 nonce,
        FeeAccount.HTLC[] memory htlcs,
        bytes[] memory secrets,
        bytes memory funderSig,
        bytes memory recipientSig
    ) external {
        FeeAccount channel = create();
        channel.claim(amount, nonce, htlcs, secrets, funderSig, recipientSig);
    }

    /**
     * @notice Settle the fee channel.
     * @param recipient The address of the recipient.
     */
    function settle(address recipient) external {
        channels[recipient].settle();
    }

    /**
     * @notice To be called by the fee channels when a claim is made.
     * @param recipient The address of the recipient.
     * @param amount The amount of tokens in the claim.
     */
    function claimed(address recipient, uint256 amount, uint256 nonce, uint256 expiration) external {
        require(msg.sender == address(channels[recipient]), "FeeAccountFactory: caller must be fee channel");

        emit Claimed(address(channels[recipient]), amount, nonce, expiration);
    }

    /**
     * @notice To be called by the fee channels when a channel is closed.
     * @param recipient The address of the recipient.
     */
    function closed(address recipient) external {
        require(msg.sender == address(channels[recipient]), "FeeAccountFactory: caller must be fee channel");

        emit Closed(address(channels[recipient]));

        delete channels[recipient];
    }

    /**
     * @notice Creates a fee channel.
     * @dev The fee channel is created by deploying a clone using the template.
     * This function is only callable by the fee manager.
     * @param recipient The address of the recipient.
     * @return The address of the fee channel.
     */
    function feeManagerCreate(address recipient) external returns (FeeAccount) {
        require(msg.sender == feeManager, "FeeAccountFactory: caller must be fee manager");
        return _create(feeManager, recipient);
    }

    /**
     * @notice Creates a fee channel.
     * @dev The fee channel is created by deploying a clone using the template.
     * This function is only callable by the recipient.
     * @return The address of the fee channel.
     */
    function create() public returns (FeeAccount) {
        return _create(feeManager, msg.sender);
    }

    /**
     * @notice Creates a fee channel.
     * Used by create and feeManagerCreate.
     * @param funder The address of the funder.
     * @param recipient The address of the recipient.
     * @return The address of the fee channel.
     */
    function _create(address funder, address recipient) internal returns (FeeAccount) {
        require(channels[recipient] == FeeAccount(address(0)), "FeeAccountFactory: fee channel exists");
        bytes32 salt = keccak256(abi.encode(token, feeManager, recipient, nonces[recipient]));

        nonces[recipient]++;

        address channel = template.cloneDeterministic(salt);
        channels[recipient] = FeeAccount(channel);
        channels[recipient].__FeeAccount_init(token, funder, recipient, feeAccountName, feeAccountVersion);

        emit Created(recipient, address(channel));

        return FeeAccount(channel);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

interface IGardenStaker {
    function vote(address filler, uint256 units, uint256 lockBlocks) external returns (bytes32);

    function changeVote(bytes32 stakeID, address newFiller) external;

    function DELEGATE_STAKE() external returns (uint256);

    function SEED() external returns (IERC20);
}

/**
 * @title Flower
 * @author Garden Finance
 * @dev This contract represents a Flower ERC721 token.
 * It allows users to mint flowers by staking a ` 10 * DELEGATE_STAKE` of tokens and vote for a filler.
 * Users can also change their vote by providing the [stake ID / Nft Token ID] and the new filler address.
 */
contract Flower is ERC721 {
    using SafeERC20 for IERC20;

    IGardenStaker immutable gardenStaker;

    uint256 private constant MAX_UINT_256 = type(uint256).max;

    constructor(string memory name, string memory symbol, address gardenStaker_) ERC721(name, symbol) {
        require(gardenStaker_ != address(0), "Flower: gardenStaker is zero address");

        gardenStaker = IGardenStaker(gardenStaker_);
    }

    /**
     * @notice Mint a Flower ERC721 token by staking a `DELEGATE_STAKE` of tokens and voting for a filler.
     * @dev This function transfers the required stake amount of tokens from the caller to the contract,
     * approves the contract to spend the tokens, and calls the `vote` function of the `gardenStaker` contract
     * to vote for the specified filler. The stake ID is then used to mint a new Flower ERC721 token for the caller.
     * `stakeID` generated from `gardenStaker` is used as the token ID.
     * @param filler The address of the filler to vote for.
     */
    function mint(address filler) external {
        uint256 stakeAmount = 10 * gardenStaker.DELEGATE_STAKE();

        gardenStaker.SEED().safeTransferFrom(_msgSender(), address(this), stakeAmount);
        gardenStaker.SEED().safeApprove(address(gardenStaker), stakeAmount);

        bytes32 stakeID = gardenStaker.vote(filler, 10, MAX_UINT_256);

        _safeMint(_msgSender(), uint256(stakeID));
    }

    /**
     * @notice Change the vote for a Flower ERC721 token.
     * @dev This function allows the token owner to change their vote by providing the stake ID and the new filler address.
     * @param stakeID The stake ID of the Flower ERC721 token.
     * @param newFiller The new address of the filler to vote for.
     */
    function changeVote(bytes32 stakeID, address newFiller) external {
        require(_ownerOf(uint256(stakeID)) == _msgSender(), "Flower: incorrect owner");

        gardenStaker.changeVote(stakeID, newFiller);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

/**
 * @author  Garden Finance
 * @title   HTLC smart contract for atomic swaps
 * @notice  Any signer can create an order to serve as one of either halfs of an cross chain
 *          atomic swap for any user with respective valid signatures.
 * @dev     The contracts can be used to create an order to serve as the the commitment for two
 *          types of users :
 *          Initiator functions: 1. initate
 *                               2. refund
 *          Redeemer function: 1. redeem
 */

contract NativeHTLC is EIP712 {
    using ECDSA for bytes32;

    struct Order {
        bool isFulfilled;
        address payable initiator;
        address payable redeemer;
        uint256 initiatedAt;
        uint256 timelock;
        uint256 amount;
    }

    mapping(bytes32 => Order) public orders;

    bytes32 private constant _REFUND_TYPEHASH = keccak256("Refund(bytes32 orderId)");

    event Initiated(bytes32 indexed orderID, bytes32 indexed secretHash, uint256 amount);
    event Redeemed(bytes32 indexed orderID, bytes32 indexed secretHash, bytes secret);
    event Refunded(bytes32 indexed orderID);

    error NativeHTLC__ZeroAddressInitiator();
    error NativeHTLC__ZeroAddressRedeemer();
    error NativeHTLC__ZeroTimelock();
    error NativeHTLC__ZeroAmount();
    error NativeHTLC__OrderNotInitiated();
    error NativeHTLC__OrderFulfilled();
    error NativeHTLC__IncorrectSecret();
    error NativeHTLC__InsufficientBalance();
    error NativeHTLC__OrderNotExpired();
    error NativeHTLC__SameInitiatorAndRedeemer();
    error NativeHTLC__DuplicateOrder();
    error NativeHTLC__InvalidRedeemerSignature();
    error NativeHTLC__IncorrectFundsRecieved();

    /**
     * @notice  .
     * @dev     provides checks to ensure
     *              1. redeemer is not null address
     *              3. timelock is greater than 0
     *              4. amount is not zero
     * @param   redeemer  public address of the reedeem
     * @param   timelock  timelock in period for the htlc order
     * @param   amount  amount of tokens to trade
     */
    modifier safeParams(
        address initiator,
        address redeemer,
        uint256 timelock,
        uint256 amount
    ) {
        require(redeemer != address(0), NativeHTLC__ZeroAddressRedeemer());
        require(initiator != redeemer, NativeHTLC__SameInitiatorAndRedeemer());
        require(timelock > 0, NativeHTLC__ZeroTimelock());
        require(amount > 0, NativeHTLC__ZeroAmount());
        require(msg.value == amount, NativeHTLC__IncorrectFundsRecieved());
        _;
    }

    constructor(string memory name, string memory version) EIP712(name, version) {}

    /**
     * @notice  Signers can create an order with order params
     * @dev     Secret used to generate secret hash for iniatiation should be generated randomly
     *          and sha256 hash should be used to support hashing methods on other non-evm chains.
     *          Signers cannot generate orders with same secret hash or override an existing order.
     * @param   redeemer  public address of the redeemer
     * @param   timelock  timelock in period for the htlc order
     * @param   secretHash  sha256 hash of the secret used for redemtion
     *
     */
    function initiate(
        address payable redeemer,
        uint256 timelock,
        uint256 amount,
        bytes32 secretHash
    ) external payable safeParams(msg.sender, redeemer, timelock, amount) {
        _initiate(payable(msg.sender), redeemer, timelock, secretHash);
    }

    /**
     * @notice  Signers can create an order with order params
     * @dev     Secret used to generate secret hash for iniatiation should be generated randomly
     *          and sha256 hash should be used to support hashing methods on other non-evm chains.
     *          Signers cannot generate orders with same secret hash or override an existing order.
     * @param   redeemer  public address of the redeemer
     * @param   timelock  timelock in period for the htlc order
     * @param   secretHash  sha256 hash of the secret used for redemtion
     *
     */
    function initiateOnBehalf(
        address payable initiator,
        address payable redeemer,
        uint256 timelock,
        uint256 amount,
        bytes32 secretHash
    ) external payable safeParams(initiator, redeemer, timelock, amount) {
        require(initiator != address(0), NativeHTLC__ZeroAddressInitiator());
        _initiate(initiator, redeemer, timelock, secretHash);
    }

    /**
     * @notice  Signers with correct secret to an order's secret hash can redeem to claim the locked
     *          token
     * @dev     Signers are not allowed to redeem an order with wrong secret or redeem the same order
     *          multiple times
     * @param   orderID  orderIds if the htlc order
     * @param   secret  secret used to redeem an order
     */
    function redeem(bytes32 orderID, bytes calldata secret) external {
        Order storage order = orders[orderID];

        require(order.redeemer != address(0x0), NativeHTLC__OrderNotInitiated());
        require(!order.isFulfilled, NativeHTLC__OrderFulfilled());

        bytes32 secretHash = sha256(secret);

        require(
            sha256(abi.encode(block.chainid, secretHash, order.initiator)) == orderID,
            NativeHTLC__IncorrectSecret()
        );

        order.isFulfilled = true;

        emit Redeemed(orderID, secretHash, secret);

        require(address(this).balance >= order.amount, NativeHTLC__InsufficientBalance());

        order.redeemer.transfer(order.amount);
    }

    /**
     * @notice  Signers can refund the locked assets after timelock block number
     * @dev     Signers cannot refund the an order before epiry block number or refund the same order
     *          multiple times.
     *          Funds will be SafeTransferred to the initiator.
     * @param   orderID  orderId of the htlc order
     */
    function refund(bytes32 orderID) external {
        Order storage order = orders[orderID];

        require(order.redeemer != address(0), NativeHTLC__OrderNotInitiated());
        require(!order.isFulfilled, NativeHTLC__OrderFulfilled());
        require(order.initiatedAt + order.timelock < block.number, NativeHTLC__OrderNotExpired());

        order.isFulfilled = true;

        emit Refunded(orderID);

        order.initiator.transfer(order.amount);
    }

    /**
     * @notice  Internal function to initiate an order for an atomic swap
     * @dev     This function is called internally to create a new order for an atomic swap.
     *          It checks that the initiator and redeemer addresses are different and that there is no duplicate order.
     *          It creates a new order with the provided parameters and stores it in the 'orders' mapping.
     *          It emits an 'Initiated' event with the order ID, secret hash, and amount.
     *          It transfers the specified amount of tokens from the initiator to the contract address.
     * @param   initiator_   The address of the refunder of the atomic swap
     * @param   redeemer_   The address of the redeemer of the atomic swap
     * @param   secretHash_ The hash of the secret used for redemption
     * @param   timelock_     The timelock block number for the atomic swap
     */
    function _initiate(
        address payable initiator_,
        address payable redeemer_,
        uint256 timelock_,
        bytes32 secretHash_
    ) internal {
        bytes32 orderID = sha256(abi.encode(block.chainid, secretHash_, initiator_));
        Order memory order = orders[orderID];

        require(order.redeemer == address(0), NativeHTLC__DuplicateOrder());

        Order memory newOrder = Order({
            isFulfilled: false,
            initiator: initiator_,
            redeemer: redeemer_,
            initiatedAt: block.number,
            timelock: timelock_,
            amount: msg.value
        });
        orders[orderID] = newOrder;

        emit Initiated(orderID, secretHash_, orders[orderID].amount);
    }

    /**
     * @notice  Redeemers can let initiator refund the locked assets before expiry block number
     * @dev     Signers cannot refund the the same order multiple times.
     *          Funds will be SafeTransferred to the initiator.
     *
     * @param orderID       orderID of the htlc order
     * @param signature     EIP712 signature provided by redeemer for instant refund.
     */
    function instantRefund(bytes32 orderID, bytes calldata signature) external {
        Order storage order = orders[orderID];
        require(!order.isFulfilled, NativeHTLC__OrderFulfilled());

        address redeemer = instantRefundDigest(orderID).recover(signature);
        require(order.redeemer == redeemer, NativeHTLC__InvalidRedeemerSignature());

        order.isFulfilled = true;

        emit Refunded(orderID);

        order.initiator.transfer(order.amount);
    }

    /**
     * @notice  Calculates the digest for instant refund signatures
     * @dev     Uses EIP712 typed data hashing to generate digest that should be signed by redeemer
     *          to allow instant refund before timelock expiry
     * @param   orderID  The order ID for which instant refund is being requested
     * @return  bytes32  The digest that should be signed by redeemer
     */
    function instantRefundDigest(bytes32 orderID) public view returns (bytes32) {
        return _hashTypedDataV4(keccak256(abi.encode(_REFUND_TYPEHASH, orderID)));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract USDT is ERC20 {
    constructor() ERC20("Tether USD", "USDT") {
        _mint(msg.sender, 21_000_000_000 * 10 ** 6);
    }

    function decimals() public pure override returns (uint8) {
        return 6;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract WBTC is ERC20 {
    constructor() ERC20("Wrapped Bitcoin", "WBTC") {
        _mint(msg.sender, 21_000_000 * 10 ** 8);
    }

    function decimals() public pure override returns (uint8) {
        return 8;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/utils/Strings.sol";

contract Multicall {
    function multicall(address target, bytes[] calldata data) public {
        uint256 length = data.length;
        for (uint256 i = 0; i < length; i++) {
            (bool success, bytes memory result) = target.call(data[i]);
            if (!success) {
                if (result.length < 68) revert();
                assembly {
                    result := add(result, 0x04)
                }
                revert(abi.decode(result, (string)));
            }
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

contract Orderbook {
    event Created(bytes data);
    event Filled(bytes data);

    function createOrder(bytes calldata data) public {
        emit Created(data);
    }

    function fillOrder(bytes calldata data) public {
        emit Filled(data);
    }
}

File 47 of 51 : SEED.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

/// @title SEED
/// @author Garden Finance
/// @notice SEED is the native token of Garden Finance and is used for governance and staking.
/// @dev SEED is an ERC20 token with a fixed supply of 147,000,000 and 18 decimals.
contract SEED is ERC20 {
    constructor() ERC20("SEED", "SEED") {
        _mint(_msgSender(), 147_000_000 * (10 ** decimals()));
    }
}

File 48 of 51 : BaseStaker.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

/**
 * @title BaseStaker
 * @dev This contract serves as the base contract for staking functionality.
 * It provides structs and mappings [STATE] to manage stakes and fillers.
 * It also includes a function to retrieve filler information.
 */
abstract contract BaseStaker is AccessControl {
    using EnumerableSet for EnumerableSet.Bytes32Set;

    struct Stake {
        address owner;
        uint256 stake;
        uint256 units;
        uint256 votes;
        address filler;
        uint256 expiry;
    }

    struct Filler {
        uint16 feeInBips;
        uint256 stake;
        uint256 deregisteredAt;
        EnumerableSet.Bytes32Set delegateStakeIDs;
    }

    IERC20 public immutable SEED;

    uint256 public immutable DELEGATE_STAKE;

    uint256 public immutable FILLER_STAKE;
    uint256 public immutable FILLER_COOL_DOWN;
    bytes32 public constant FILLER = keccak256("FILLER");

    mapping(bytes32 => Stake) public stakes;
    mapping(address => uint256) public delegateNonce;

    mapping(address => Filler) internal fillers;

    constructor(address seed, uint256 delegateStake, uint256 fillerStake, uint256 fillerCooldown) {
        require(seed != address(0), "BaseStaker: seed is zero address");

        SEED = IERC20(seed);
        DELEGATE_STAKE = delegateStake;
        FILLER_STAKE = fillerStake;
        FILLER_COOL_DOWN = fillerCooldown;
    }

    /**
     * @dev Retrieves information about a filler.
     * @param filler The address of the filler.
     * @return feeInBips The fee in basis points set by the filler.
     * @return stake The total stake amount of the filler.
     * @return deregisteredAt The timestamp when the filler was deregistered.
     * @return delegateStakeIDs An array of delegate stake IDs associated with the filler.
     */
    function getFiller(
        address filler
    )
        external
        view
        returns (uint16 feeInBips, uint256 stake, uint256 deregisteredAt, bytes32[] memory delegateStakeIDs)
    {
        Filler storage f = fillers[filler];
        return (f.feeInBips, f.stake, f.deregisteredAt, f.delegateStakeIDs.values());
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "./BaseStaker.sol";

/**
 * @title DelegateManager
 * @dev This contract manages the delegation of voting power to fillers.
 * It allows users to stake their tokens and delegate their voting power to fillers.
 * Delegated votes can be changed, extended, renewed, or refunded by the stake owner.
 * The contract keeps track of the total votes for each filler address.
 * @notice This contract is abstract and will be inherited by a GardenStaker.
 */
abstract contract DelegateManager is BaseStaker {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.Bytes32Set;

    uint256 constant HALF_YEAR = 180 * 7200;
    uint256 constant ONE_YEAR = 365 * 7200;
    uint256 constant TWO_YEARS = 730 * 7200;
    uint256 constant FOUR_YEARS = 1460 * 7200;
    uint256 constant MAX_UINT_256 = type(uint256).max;

    event Voted(bytes32 indexed stakeID, address indexed filler, uint256 votes);
    event VotesChanged(bytes32 indexed stakeID, address indexed oldFiller, address indexed newFiller);

    event Staked(bytes32 indexed stakeID, address indexed owner, uint256 stake, uint256 expiry);
    event StakeExtended(bytes32 indexed stakeID, uint256 newLockBlocks);
    event StakeRenewed(bytes32 indexed stakeID, uint256 newLockBlocks);
    event StakeRefunded(bytes32 indexed stakeID);

    /**
     * @notice Allows a user to stake their tokens and delegate their voting power to a filler.
     * @dev The delegated votes can be changed, extended, renewed, or refunded by the stake owner.
     *      - delegate must approve `uints * DELEGATE_STAKE` amount of tokens to this contract
     * @param filler The address of the filler to delegate the voting power to.
     *          - filler: must be a valid address with `FILLER ROLE`.
     * @param units The number of units to stake.
     * @param lockBlocks The number of blocks to lock the stake for.
     *          - LockBlocks define Vote Power a delegate stake gets based on block period.
     * @return stakeID The ID of the stake.
     */
    function vote(address filler, uint256 units, uint256 lockBlocks) external returns (bytes32 stakeID) {
        _checkRole(FILLER, filler);
        require(units != 0, "DelegateManager: zero unit");

        uint8 multiplier = _calculateVoteMultiplier(lockBlocks);
        uint256 stakeAmount = units * DELEGATE_STAKE;

        stakeID = keccak256(abi.encodePacked(_msgSender(), delegateNonce[_msgSender()]));
        uint256 expiry = multiplier == uint8(7) ? MAX_UINT_256 : block.number + lockBlocks;

        stakes[stakeID] = Stake({
            owner: _msgSender(),
            stake: stakeAmount,
            units: units,
            votes: units * multiplier,
            filler: filler,
            expiry: expiry
        });
        delegateNonce[_msgSender()]++;

        require(
            fillers[stakes[stakeID].filler].delegateStakeIDs.add(stakeID),
            "DelegateManager: stakeID already exists"
        );

        SEED.safeTransferFrom(_msgSender(), address(this), stakeAmount);

        emit Staked(stakeID, stakes[stakeID].owner, stakes[stakeID].stake, stakes[stakeID].expiry);

        emit Voted(stakeID, stakes[stakeID].filler, stakes[stakeID].votes);
    }

    /**
     * @notice Allows the stake owner to change the voting power delegation from one filler to another.
     * @dev The stake owner must be the caller of this function.
     *      The stake must not have expired.
     *      The new filler must have the FILLER role.
     * @param stakeID The ID of the stake to change the vote for.
     * @param newFiller The address of the new filler to delegate the voting power to.
     */
    function changeVote(bytes32 stakeID, address newFiller) external {
        _checkRole(FILLER, newFiller);

        Stake memory stake = stakes[stakeID];
        require(stake.owner == _msgSender(), "DelegateManager: stake owner mismatch");
        require(stake.expiry > block.number, "DelegateManager: stake expired");

        address oldFiller = stake.filler;
        stake.filler = newFiller;
        stakes[stakeID] = stake;

        emit VotesChanged(stakeID, oldFiller, stake.filler);

        require(fillers[oldFiller].delegateStakeIDs.remove(stakeID), "DelegateManager: stakeID not found");
        require(fillers[stake.filler].delegateStakeIDs.add(stakeID), "DelegateManager: stakeID already exists");
    }

    /**
     * @notice Allows the stake owner to refund their staked tokens.
     * @dev The stake must have expired and the stake ID must exist.
     * @param stakeID The ID of the stake to refund.
     */
    function refund(bytes32 stakeID) external {
        Stake memory stake = stakes[stakeID];

        require(stake.expiry < block.number, "DelegateManager: stake not expired");
        require(stake.owner != address(0), "DelegateManager: stake not found");

        require(fillers[stake.filler].delegateStakeIDs.remove(stakeID), "DelegateManager: stakeID not found");

        delete (stakes[stakeID]);

        SEED.safeTransfer(stake.owner, stake.stake);

        emit StakeRefunded(stakeID);
    }

    /**
     * @notice Allows the stake owner to renew their stake by extending the lock duration and updating the voting power.
     * @dev The stake owner must be the caller of this function.
     *      The stake must have expired.
     * @param stakeID The ID of the stake to renew.
     * @param newLockBlocks The new number of blocks to lock the stake for.
     */
    function renew(bytes32 stakeID, uint256 newLockBlocks) external {
        Stake memory stake = stakes[stakeID];

        require(stake.owner == _msgSender(), "DelegateManager: incorrect owner");
        require(stake.expiry < block.number, "DelegateManager: stake not expired");

        uint8 multiplier = _calculateVoteMultiplier(newLockBlocks);
        stake.expiry = multiplier == uint8(7) ? MAX_UINT_256 : block.number + newLockBlocks;
        stake.votes = multiplier * stake.units;

        stakes[stakeID] = stake;

        emit StakeRenewed(stakeID, newLockBlocks);
    }

    /**
     * @notice Allows the stake owner to extend the lock duration and update the voting power of a stake.
     * @dev The caller must be the owner of the stake.
     *      The stake must not have expired.
     *      Case: delegate can call this function when his/her stake is about to expire,
     *            to newLockBlocks lesser than previous expiry and still enjoy the same voting power.
     * @param stakeID The ID of the stake to extend.
     * @param newLockBlocks The new number of blocks to lock the stake for.
     */
    function extend(bytes32 stakeID, uint256 newLockBlocks) external {
        Stake memory stake = stakes[stakeID];

        require(stake.owner == _msgSender(), "DelegateManager: caller is not the owner of the stake");
        require(stake.expiry > block.number, "DelegateManager: expired stake");

        uint8 multiplier = _calculateVoteMultiplier(newLockBlocks);
        if (multiplier > stake.votes / stake.units) {
            stake.votes = multiplier * stake.units;
        }
        stake.expiry = multiplier == uint8(7) ? MAX_UINT_256 : stake.expiry + newLockBlocks;

        stakes[stakeID] = stake;

        emit StakeExtended(stakeID, newLockBlocks);
    }

    /**
     * @notice Retrieves the total number of votes delegated to a specific filler address.
     * @dev Vote Calculation iterates through delegateStakeIDs of filler and accounts only those stakes that have not expired.
     * @param filler The address of the filler to retrieve the vote count for.
     * @return voteCount The total number of votes delegated to the specified filler address.
     */
    function getVotes(address filler) external view returns (uint256 voteCount) {
        bytes32[] memory delegates = fillers[filler].delegateStakeIDs.values();
        uint256 delegateLength = delegates.length;

        for (uint256 i = 0; i < delegateLength; i++) {
            Stake memory stake = stakes[delegates[i]];
            if (stake.expiry > block.number) {
                voteCount += stake.votes;
            }
        }
    }

    /**
     * @dev Calculates the vote multiplier based on the lock duration in blocks.
     * @param lockBlocks The number of blocks to lock the stake for.
     * @return The vote multiplier corresponding to the lock duration:
     *         - 1 for a lock duration of half a year (HALF_YEAR)
     *         - 2 for a lock duration of one year (ONE_YEAR)
     *         - 3 for a lock duration of two years (TWO_YEARS)
     *         - 4 for a lock duration of four years (FOUR_YEARS)
     *         - 7 for an indefinite lock duration (MAX_UINT_256)
     * @dev Reverts with an error message if the lock duration is not one of the specified values.
     */
    function _calculateVoteMultiplier(uint256 lockBlocks) internal pure returns (uint8) {
        if (lockBlocks == HALF_YEAR) {
            return 1;
        }
        if (lockBlocks == ONE_YEAR) {
            return 2;
        }
        if (lockBlocks == TWO_YEARS) {
            return 3;
        }
        if (lockBlocks == FOUR_YEARS) {
            return 4;
        }
        if (lockBlocks == MAX_UINT_256) {
            return 7;
        }

        revert("DelegateManager: incorrect lock duration");
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "./BaseStaker.sol";

/**
 * @title FillerManager
 * @dev A contract that manages the registration, deregistration, fee update, and refund of fillers.
 * Fillers can register, update their fee, and deregister themselves. The contract holds the staked tokens
 * during the registration period and refunds them to the fillers after a cooldown period.
 */
abstract contract FillerManager is BaseStaker {
    using SafeERC20 for IERC20;

    uint16 constant MAX_Fee_IN_BIPS = 10_000;

    event FillerRegistered(address indexed filler);
    event FillerFeeUpdated(address indexed filler, uint256 fee);
    event FillerDeregistered(address indexed filler, uint256 deregisteredAt);
    event FillerRefunded(address indexed filler);

    /**
     * @notice Registers a filler by transferring the `FILLER_STAKE` amount of tokens to the contract.
     * Only non-registered fillers can call this function.
     * Emits a FillerRegistered event upon successful registration.
     * @dev
     * - Transfers the FILLER_STAKE amount of tokens from the caller to the contract.
     * - Sets the stake amount of the caller to FILLER_STAKE.
     * - Grants the FILLER role to the caller.
     */
    function register() external {
        require(fillers[_msgSender()].stake == 0, "FillerManager: already registered");

        fillers[_msgSender()].stake = FILLER_STAKE;

        _grantRole(FILLER, _msgSender());

        SEED.safeTransferFrom(_msgSender(), address(this), FILLER_STAKE);

        emit FillerRegistered(_msgSender());
    }

    /**
     * @notice Deregisters a filler by revoking the FILLER role from the caller.
     * @dev sets the `deregisteredAt` timestamp to the current block number.
     * Only fillers with the FILLER role can call this function.
     * Emits a FillerDeregistered event with the filler's address and the current block number.
     */
    function deregister() external onlyRole(FILLER) {
        fillers[_msgSender()].deregisteredAt = block.number;

        _revokeRole(FILLER, _msgSender());

        emit FillerDeregistered(_msgSender(), block.number);
    }

    /**
     * @notice Refunds the staked tokens to a registered filler after the cooldown period has passed.
     * @dev Only fillers who have deregistered can call this function.
     *      - Transfers the FILLER_STAKE amount of tokens from the contract to the filler's address.
     *      - Deletes the filler's registration information from the fillers mapping.
     *      - Emits a FillerRefunded event with the filler's address upon successful refund.
     * @param filler_ The address of the filler to refund the tokens to.
     */
    function refund(address filler_) external {
        Filler storage filler = fillers[filler_];

        require(filler.deregisteredAt != 0, "FillerManager: not deregistered");
        require(filler.deregisteredAt + FILLER_COOL_DOWN < block.number, "FillerManager: cooldown not passed");

        fillers[filler_].feeInBips = 0;
        fillers[filler_].stake = 0;
        fillers[filler_].deregisteredAt = 0;

        SEED.safeTransfer(filler_, FILLER_STAKE);

        emit FillerRefunded(filler_);
    }

    /**
     * @notice Updates the fee for a registered filler.
     * @dev Only fillers with the FILLER role can call this function.
     * @param newFee The new fee in basis points (bips) to be set for the filler.
     *              - Must be less than `MAX_Fee_IN_BIPS`.
     */
    function updateFee(uint16 newFee) external onlyRole(FILLER) {
        require(newFee < MAX_Fee_IN_BIPS, "FillerManager: fee too high");

        fillers[_msgSender()].feeInBips = newFee;

        emit FillerFeeUpdated(_msgSender(), fillers[_msgSender()].feeInBips);
    }
}

File 51 of 51 : GardenStaker.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import "./DelegateManager.sol";
import "./FillerManager.sol";

/**
 * @title GardenStaker
 * @author Garden Finance
 * @dev GardenStaker implements DelegateManager and FillerManager.
 * It allows users to stake tokens as delegates or fillers in a garden.
 * @dev The contract is initialized with
 *      - seed: address of base Stake token
 *      - delegateStake: Amount of Seed to stake as a delegate
 *      - fillerStake: Amount of Seed to stake as a filler
 *      - fillerCooldown: Cooldown period for fillers to be refund after deregistration.
 * The contract inherits from BaseStaker and initializes State with the provided parameters.
 */
contract GardenStaker is DelegateManager, FillerManager {
    constructor(
        address seed,
        uint256 delegateStake,
        uint256 fillerStake,
        uint256 fillerCooldown
    ) BaseStaker(seed, delegateStake, fillerStake, fillerCooldown) {}
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"token_","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderID","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Initiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderID","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"secret","type":"bytes"}],"name":"Redeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderID","type":"bytes32"}],"name":"Refunded","type":"event"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"redeemer","type":"address"},{"internalType":"uint256","name":"timelock","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"secretHash","type":"bytes32"}],"name":"initiate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"redeemer","type":"address"},{"internalType":"uint256","name":"timelock","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"initiateWithSignature","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderID","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"instantRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"orders","outputs":[{"internalType":"bool","name":"isFulfilled","type":"bool"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"address","name":"redeemer","type":"address"},{"internalType":"uint256","name":"initiatedAt","type":"uint256"},{"internalType":"uint256","name":"timelock","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderID","type":"bytes32"},{"internalType":"bytes","name":"secret","type":"bytes"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderID","type":"bytes32"}],"name":"refund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

61018060405234801561001157600080fd5b50604051611dcc380380611dcc83398101604081905261003091610233565b818161003d8260006100f6565b6101205261004c8160016100f6565b61014052815160208084019190912060e052815190820120610100524660a0526100d960e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b60805250503060c05250506001600160a01b031661016052610459565b60006020835110156101125761010b83610129565b9050610123565b8161011d8482610344565b5060ff90505b92915050565b600080829050601f8151111561015d578260405163305a27a960e01b81526004016101549190610402565b60405180910390fd5b805161016882610435565b179392505050565b634e487b7160e01b600052604160045260246000fd5b60005b838110156101a1578181015183820152602001610189565b50506000910152565b600082601f8301126101bb57600080fd5b81516001600160401b038111156101d4576101d4610170565b604051601f8201601f19908116603f011681016001600160401b038111828210171561020257610202610170565b60405281815283820160200185101561021a57600080fd5b61022b826020830160208701610186565b949350505050565b60008060006060848603121561024857600080fd5b83516001600160a01b038116811461025f57600080fd5b60208501519093506001600160401b0381111561027b57600080fd5b610287868287016101aa565b604086015190935090506001600160401b038111156102a557600080fd5b6102b1868287016101aa565b9150509250925092565b600181811c908216806102cf57607f821691505b6020821081036102ef57634e487b7160e01b600052602260045260246000fd5b50919050565b601f82111561033f57806000526020600020601f840160051c8101602085101561031c5750805b601f840160051c820191505b8181101561033c5760008155600101610328565b50505b505050565b81516001600160401b0381111561035d5761035d610170565b6103718161036b84546102bb565b846102f5565b6020601f8211600181146103a5576000831561038d5750848201515b600019600385901b1c1916600184901b17845561033c565b600084815260208120601f198516915b828110156103d557878501518255602094850194600190920191016103b5565b50848210156103f35786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b6020815260008251806020840152610421816040850160208701610186565b601f01601f19169190910160400192915050565b805160208083015191908110156102ef5760001960209190910360031b1b16919050565b60805160a05160c05160e051610100516101205161014051610160516118f26104da600039600081816101a401528181610316015281816107de01528181610a200152610da80152600061053f01526000610515015260006110360152600061100e01526000610f6901526000610f9301526000610fbd01526118f26000f3fe608060405234801561001057600080fd5b50600436106100885760003560e01c80639c3f1e901161005b5780639c3f1e90146100ec578063edaf5fac14610179578063f7ff72071461018c578063fc0c546a1461019f57600080fd5b80637249fbb61461008d5780637929d59d146100a257806384b0196e146100b557806397ffc7ae146100d9575b600080fd5b6100a061009b366004611517565b6101de565b005b6100a06100b036600461158e565b610349565b6100bd610507565b6040516100d0979695949392919061164f565b60405180910390f35b6100a06100e73660046116e7565b61058f565b61013e6100fa366004611517565b60026020819052600091825260409091208054600182015492820154600383015460049093015460ff8316946001600160a01b036101009094048416949316929086565b6040805196151587526001600160a01b03958616602088015293909416928501929092526060840152608083015260a082015260c0016100d0565b6100a0610187366004611720565b610688565b6100a061019a366004611720565b610814565b6101c67f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016100d0565b600081815260026020526040902060018101546001600160a01b03166102475760405162461bcd60e51b815260206004820152601960248201527812151310ce881bdc99195c881b9bdd081a5b9a5d1a585d1959603a1b60448201526064015b60405180910390fd5b805460ff16156102695760405162461bcd60e51b815260040161023e9061176c565b438160030154826002015461027e919061179b565b106102cb5760405162461bcd60e51b815260206004820152601760248201527f48544c433a206f72646572206e6f742065787069726564000000000000000000604482015260640161023e565b805460ff1916600117815560405182907ffe509803c09416b28ff3d8f690c8b0c61462a892c46d5430c8fb20abe472daf090600090a280546004820154610345916001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116926101009092041690610a46565b5050565b8585856001600160a01b0383166103a25760405162461bcd60e51b815260206004820152601b60248201527f48544c433a207a65726f20616464726573732072656465656d65720000000000604482015260640161023e565b600082116103e85760405162461bcd60e51b815260206004820152601360248201527248544c433a207a65726f2074696d656c6f636b60681b604482015260640161023e565b6000811161042c5760405162461bcd60e51b815260206004820152601160248201527012151310ce881e995c9bc8185b5bdd5b9d607a1b604482015260640161023e565b60006104ec86868080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250506040516104e692506104cb91507fde5278e8c85ac4e57ea69f40f594c328916a0c846a6bbd82592e91cff5eee136908f908f908f908f906020019485526001600160a01b0393909316602085015260408401919091526060830152608082015260a00190565b60405160208183030381529060405280519060200120610aae565b90610ae1565b90506104fb818b8b8b8b610b05565b50505050505050505050565b60006060808280808361053a7f000000000000000000000000000000000000000000000000000000000000000083610ddc565b6105657f00000000000000000000000000000000000000000000000000000000000000006001610ddc565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b8383836001600160a01b0383166105e85760405162461bcd60e51b815260206004820152601b60248201527f48544c433a207a65726f20616464726573732072656465656d65720000000000604482015260640161023e565b6000821161062e5760405162461bcd60e51b815260206004820152601360248201527248544c433a207a65726f2074696d656c6f636b60681b604482015260640161023e565b600081116106725760405162461bcd60e51b815260206004820152601160248201527012151310ce881e995c9bc8185b5bdd5b9d607a1b604482015260640161023e565b61067f3388888888610b05565b50505050505050565b600061070083838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525050604080517f0e9893496d91576e89d810f2a1455a2d7ccd9e051d2fa03ea3c8636e9dc6aac260208201529081018990526104e6925060600190506104cb565b60008581526002602052604090206001810154919250906001600160a01b038084169116146107715760405162461bcd60e51b815260206004820181905260248201527f48544c433a20696e76616c69642072656465656d6572207369676e6174757265604482015260640161023e565b805460ff16156107935760405162461bcd60e51b815260040161023e9061176c565b805460ff1916600117815560405185907ffe509803c09416b28ff3d8f690c8b0c61462a892c46d5430c8fb20abe472daf090600090a28054600482015461080d916001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116926101009092041690610a46565b5050505050565b600083815260026020526040902060018101546001600160a01b03166108785760405162461bcd60e51b815260206004820152601960248201527812151310ce881bdc99195c881b9bdd081a5b9a5d1a585d1959603a1b604482015260640161023e565b805460ff161561089a5760405162461bcd60e51b815260040161023e9061176c565b6000600284846040516108ae9291906117bc565b602060405180830381855afa1580156108cb573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906108ee91906117cc565b8254604080514660208201529081018390526101009091046001600160a01b03166060820152909150859060029060800160408051601f1981840301815290829052610939916117e5565b602060405180830381855afa158015610956573d6000803e3d6000fd5b5050506040513d601f19601f8201168201806040525081019061097991906117cc565b146109bf5760405162461bcd60e51b815260206004820152601660248201527512151310ce881a5b98dbdc9c9958dd081cd958dc995d60521b604482015260640161023e565b815460ff19166001178255604051819086907f4c9a044220477b4e94dbb0d07ff6ff4ac30d443bef59098c4541b006954778e290610a009088908890611801565b60405180910390a36001820154600483015461080d916001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116929116905b6040516001600160a01b038316602482015260448101829052610aa990849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152610e87565b505050565b6000610adb610abb610f5c565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b6000806000610af0858561108c565b91509150610afd816110d1565b509392505050565b836001600160a01b0316856001600160a01b031603610b705760405162461bcd60e51b815260206004820152602160248201527f48544c433a2073616d6520696e69746961746f7220616e642072656465656d656044820152603960f91b606482015260840161023e565b604080514660208201529081018290526001600160a01b038616606082015260009060029060800160408051601f1981840301815290829052610bb2916117e5565b602060405180830381855afa158015610bcf573d6000803e3d6000fd5b5050506040513d601f19601f82011682018060405250810190610bf291906117cc565b600081815260026020818152604092839020835160c081018552815460ff8116151582526001600160a01b0361010090910481169382019390935260018201549092169382018490529182015460608201526003820154608082015260049091015460a082015291925015610ca15760405162461bcd60e51b8152602060048201526015602482015274242a26219d10323ab83634b1b0ba329037b93232b960591b604482015260640161023e565b6040805160c08101825260008082526001600160a01b038a811660208085019182528b83168587019081524360608701908152608087018d815260a088018d81528b88526002808652978a90208951815497516001600160a81b0319909816901515610100600160a81b031916176101009789169790970296909617865592516001860180546001600160a01b03191691909716179095555194830194909455915160038201559151600490920182905592519081529091859185917f01b41cbd4bbcc3c5b968a04d3fbdd8c1648a39ff6d9a3929b4840cea1142bc65910160405180910390a3600083815260026020526040902060040154610dd2906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016908a90309061121e565b5050505050505050565b606060ff8314610df657610def8361125c565b9050610adb565b818054610e0290611830565b80601f0160208091040260200160405190810160405280929190818152602001828054610e2e90611830565b8015610e7b5780601f10610e5057610100808354040283529160200191610e7b565b820191906000526020600020905b815481529060010190602001808311610e5e57829003601f168201915b50505050509050610adb565b6000610edc826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661129b9092919063ffffffff16565b9050805160001480610efd575080806020019051810190610efd919061186a565b610aa95760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b606482015260840161023e565b6000306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148015610fb557507f000000000000000000000000000000000000000000000000000000000000000046145b15610fdf57507f000000000000000000000000000000000000000000000000000000000000000090565b611087604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b60008082516041036110c25760208301516040840151606085015160001a6110b6878285856112b2565b945094505050506110ca565b506000905060025b9250929050565b60008160048111156110e5576110e5611893565b036110ed5750565b600181600481111561110157611101611893565b0361114e5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161023e565b600281600481111561116257611162611893565b036111af5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161023e565b60038160048111156111c3576111c3611893565b0361121b5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161023e565b50565b6040516001600160a01b03808516602483015283166044820152606481018290526112569085906323b872dd60e01b90608401610a72565b50505050565b6060600061126983611376565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b60606112aa848460008561139e565b949350505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156112e9575060009050600361136d565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561133d573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166113665760006001925092505061136d565b9150600090505b94509492505050565b600060ff8216601f811115610adb57604051632cd44ac360e21b815260040160405180910390fd5b6060824710156113ff5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840161023e565b600080866001600160a01b0316858760405161141b91906117e5565b60006040518083038185875af1925050503d8060008114611458576040519150601f19603f3d011682016040523d82523d6000602084013e61145d565b606091505b509150915061146e87838387611479565b979650505050505050565b606083156114e85782516000036114e1576001600160a01b0385163b6114e15760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161023e565b50816112aa565b6112aa83838151156114fd5781518083602001fd5b8060405162461bcd60e51b815260040161023e91906118a9565b60006020828403121561152957600080fd5b5035919050565b80356001600160a01b038116811461154757600080fd5b919050565b60008083601f84011261155e57600080fd5b50813567ffffffffffffffff81111561157657600080fd5b6020830191508360208285010111156110ca57600080fd5b60008060008060008060a087890312156115a757600080fd5b6115b087611530565b9550602087013594506040870135935060608701359250608087013567ffffffffffffffff8111156115e157600080fd5b6115ed89828a0161154c565b979a9699509497509295939492505050565b60005b8381101561161a578181015183820152602001611602565b50506000910152565b6000815180845261163b8160208601602086016115ff565b601f01601f19169290920160200192915050565b60ff60f81b8816815260e06020820152600061166e60e0830189611623565b82810360408401526116808189611623565b606084018890526001600160a01b038716608085015260a0840186905283810360c08501528451808252602080870193509091019060005b818110156116d65783518352602093840193909201916001016116b8565b50909b9a5050505050505050505050565b600080600080608085870312156116fd57600080fd5b61170685611530565b966020860135965060408601359560600135945092505050565b60008060006040848603121561173557600080fd5b83359250602084013567ffffffffffffffff81111561175357600080fd5b61175f8682870161154c565b9497909650939450505050565b60208082526015908201527412151310ce881bdc99195c88199d5b199a5b1b1959605a1b604082015260600190565b80820180821115610adb57634e487b7160e01b600052601160045260246000fd5b8183823760009101908152919050565b6000602082840312156117de57600080fd5b5051919050565b600082516117f78184602087016115ff565b9190910192915050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b600181811c9082168061184457607f821691505b60208210810361186457634e487b7160e01b600052602260045260246000fd5b50919050565b60006020828403121561187c57600080fd5b8151801515811461188c57600080fd5b9392505050565b634e487b7160e01b600052602160045260246000fd5b60208152600061188c602083018461162356fea2646970667358221220623dd3ef8f559e5970e1c0ec6ef48bba381fc88a37a6a42dcaa328ef14c0713364736f6c634300081c0033000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad6000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000448544c430000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100885760003560e01c80639c3f1e901161005b5780639c3f1e90146100ec578063edaf5fac14610179578063f7ff72071461018c578063fc0c546a1461019f57600080fd5b80637249fbb61461008d5780637929d59d146100a257806384b0196e146100b557806397ffc7ae146100d9575b600080fd5b6100a061009b366004611517565b6101de565b005b6100a06100b036600461158e565b610349565b6100bd610507565b6040516100d0979695949392919061164f565b60405180910390f35b6100a06100e73660046116e7565b61058f565b61013e6100fa366004611517565b60026020819052600091825260409091208054600182015492820154600383015460049093015460ff8316946001600160a01b036101009094048416949316929086565b6040805196151587526001600160a01b03958616602088015293909416928501929092526060840152608083015260a082015260c0016100d0565b6100a0610187366004611720565b610688565b6100a061019a366004611720565b610814565b6101c67f000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad681565b6040516001600160a01b0390911681526020016100d0565b600081815260026020526040902060018101546001600160a01b03166102475760405162461bcd60e51b815260206004820152601960248201527812151310ce881bdc99195c881b9bdd081a5b9a5d1a585d1959603a1b60448201526064015b60405180910390fd5b805460ff16156102695760405162461bcd60e51b815260040161023e9061176c565b438160030154826002015461027e919061179b565b106102cb5760405162461bcd60e51b815260206004820152601760248201527f48544c433a206f72646572206e6f742065787069726564000000000000000000604482015260640161023e565b805460ff1916600117815560405182907ffe509803c09416b28ff3d8f690c8b0c61462a892c46d5430c8fb20abe472daf090600090a280546004820154610345916001600160a01b037f000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad68116926101009092041690610a46565b5050565b8585856001600160a01b0383166103a25760405162461bcd60e51b815260206004820152601b60248201527f48544c433a207a65726f20616464726573732072656465656d65720000000000604482015260640161023e565b600082116103e85760405162461bcd60e51b815260206004820152601360248201527248544c433a207a65726f2074696d656c6f636b60681b604482015260640161023e565b6000811161042c5760405162461bcd60e51b815260206004820152601160248201527012151310ce881e995c9bc8185b5bdd5b9d607a1b604482015260640161023e565b60006104ec86868080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250506040516104e692506104cb91507fde5278e8c85ac4e57ea69f40f594c328916a0c846a6bbd82592e91cff5eee136908f908f908f908f906020019485526001600160a01b0393909316602085015260408401919091526060830152608082015260a00190565b60405160208183030381529060405280519060200120610aae565b90610ae1565b90506104fb818b8b8b8b610b05565b50505050505050505050565b60006060808280808361053a7f48544c430000000000000000000000000000000000000000000000000000000483610ddc565b6105657f31000000000000000000000000000000000000000000000000000000000000016001610ddc565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b8383836001600160a01b0383166105e85760405162461bcd60e51b815260206004820152601b60248201527f48544c433a207a65726f20616464726573732072656465656d65720000000000604482015260640161023e565b6000821161062e5760405162461bcd60e51b815260206004820152601360248201527248544c433a207a65726f2074696d656c6f636b60681b604482015260640161023e565b600081116106725760405162461bcd60e51b815260206004820152601160248201527012151310ce881e995c9bc8185b5bdd5b9d607a1b604482015260640161023e565b61067f3388888888610b05565b50505050505050565b600061070083838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525050604080517f0e9893496d91576e89d810f2a1455a2d7ccd9e051d2fa03ea3c8636e9dc6aac260208201529081018990526104e6925060600190506104cb565b60008581526002602052604090206001810154919250906001600160a01b038084169116146107715760405162461bcd60e51b815260206004820181905260248201527f48544c433a20696e76616c69642072656465656d6572207369676e6174757265604482015260640161023e565b805460ff16156107935760405162461bcd60e51b815260040161023e9061176c565b805460ff1916600117815560405185907ffe509803c09416b28ff3d8f690c8b0c61462a892c46d5430c8fb20abe472daf090600090a28054600482015461080d916001600160a01b037f000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad68116926101009092041690610a46565b5050505050565b600083815260026020526040902060018101546001600160a01b03166108785760405162461bcd60e51b815260206004820152601960248201527812151310ce881bdc99195c881b9bdd081a5b9a5d1a585d1959603a1b604482015260640161023e565b805460ff161561089a5760405162461bcd60e51b815260040161023e9061176c565b6000600284846040516108ae9291906117bc565b602060405180830381855afa1580156108cb573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906108ee91906117cc565b8254604080514660208201529081018390526101009091046001600160a01b03166060820152909150859060029060800160408051601f1981840301815290829052610939916117e5565b602060405180830381855afa158015610956573d6000803e3d6000fd5b5050506040513d601f19601f8201168201806040525081019061097991906117cc565b146109bf5760405162461bcd60e51b815260206004820152601660248201527512151310ce881a5b98dbdc9c9958dd081cd958dc995d60521b604482015260640161023e565b815460ff19166001178255604051819086907f4c9a044220477b4e94dbb0d07ff6ff4ac30d443bef59098c4541b006954778e290610a009088908890611801565b60405180910390a36001820154600483015461080d916001600160a01b037f000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad68116929116905b6040516001600160a01b038316602482015260448101829052610aa990849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152610e87565b505050565b6000610adb610abb610f5c565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b6000806000610af0858561108c565b91509150610afd816110d1565b509392505050565b836001600160a01b0316856001600160a01b031603610b705760405162461bcd60e51b815260206004820152602160248201527f48544c433a2073616d6520696e69746961746f7220616e642072656465656d656044820152603960f91b606482015260840161023e565b604080514660208201529081018290526001600160a01b038616606082015260009060029060800160408051601f1981840301815290829052610bb2916117e5565b602060405180830381855afa158015610bcf573d6000803e3d6000fd5b5050506040513d601f19601f82011682018060405250810190610bf291906117cc565b600081815260026020818152604092839020835160c081018552815460ff8116151582526001600160a01b0361010090910481169382019390935260018201549092169382018490529182015460608201526003820154608082015260049091015460a082015291925015610ca15760405162461bcd60e51b8152602060048201526015602482015274242a26219d10323ab83634b1b0ba329037b93232b960591b604482015260640161023e565b6040805160c08101825260008082526001600160a01b038a811660208085019182528b83168587019081524360608701908152608087018d815260a088018d81528b88526002808652978a90208951815497516001600160a81b0319909816901515610100600160a81b031916176101009789169790970296909617865592516001860180546001600160a01b03191691909716179095555194830194909455915160038201559151600490920182905592519081529091859185917f01b41cbd4bbcc3c5b968a04d3fbdd8c1648a39ff6d9a3929b4840cea1142bc65910160405180910390a3600083815260026020526040902060040154610dd2906001600160a01b037f000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad616908a90309061121e565b5050505050505050565b606060ff8314610df657610def8361125c565b9050610adb565b818054610e0290611830565b80601f0160208091040260200160405190810160405280929190818152602001828054610e2e90611830565b8015610e7b5780601f10610e5057610100808354040283529160200191610e7b565b820191906000526020600020905b815481529060010190602001808311610e5e57829003601f168201915b50505050509050610adb565b6000610edc826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661129b9092919063ffffffff16565b9050805160001480610efd575080806020019051810190610efd919061186a565b610aa95760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b606482015260840161023e565b6000306001600160a01b037f000000000000000000000000795dcb58d1cd4789169d5f938ea05e17eceb68ca16148015610fb557507f000000000000000000000000000000000000000000000000000000000000008246145b15610fdf57507f85df3d3e1fd1a2a2b545c4bbe87287a6a162fadcbd7f3f4713f734d4857adaa790565b611087604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fc38c02e093b1d1fd69dbaa0ddbcf16061a269f51df3a6e168cfe9f9334eb875f918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b60008082516041036110c25760208301516040840151606085015160001a6110b6878285856112b2565b945094505050506110ca565b506000905060025b9250929050565b60008160048111156110e5576110e5611893565b036110ed5750565b600181600481111561110157611101611893565b0361114e5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161023e565b600281600481111561116257611162611893565b036111af5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161023e565b60038160048111156111c3576111c3611893565b0361121b5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161023e565b50565b6040516001600160a01b03808516602483015283166044820152606481018290526112569085906323b872dd60e01b90608401610a72565b50505050565b6060600061126983611376565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b60606112aa848460008561139e565b949350505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156112e9575060009050600361136d565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561133d573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166113665760006001925092505061136d565b9150600090505b94509492505050565b600060ff8216601f811115610adb57604051632cd44ac360e21b815260040160405180910390fd5b6060824710156113ff5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840161023e565b600080866001600160a01b0316858760405161141b91906117e5565b60006040518083038185875af1925050503d8060008114611458576040519150601f19603f3d011682016040523d82523d6000602084013e61145d565b606091505b509150915061146e87838387611479565b979650505050505050565b606083156114e85782516000036114e1576001600160a01b0385163b6114e15760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161023e565b50816112aa565b6112aa83838151156114fd5781518083602001fd5b8060405162461bcd60e51b815260040161023e91906118a9565b60006020828403121561152957600080fd5b5035919050565b80356001600160a01b038116811461154757600080fd5b919050565b60008083601f84011261155e57600080fd5b50813567ffffffffffffffff81111561157657600080fd5b6020830191508360208285010111156110ca57600080fd5b60008060008060008060a087890312156115a757600080fd5b6115b087611530565b9550602087013594506040870135935060608701359250608087013567ffffffffffffffff8111156115e157600080fd5b6115ed89828a0161154c565b979a9699509497509295939492505050565b60005b8381101561161a578181015183820152602001611602565b50506000910152565b6000815180845261163b8160208601602086016115ff565b601f01601f19169290920160200192915050565b60ff60f81b8816815260e06020820152600061166e60e0830189611623565b82810360408401526116808189611623565b606084018890526001600160a01b038716608085015260a0840186905283810360c08501528451808252602080870193509091019060005b818110156116d65783518352602093840193909201916001016116b8565b50909b9a5050505050505050505050565b600080600080608085870312156116fd57600080fd5b61170685611530565b966020860135965060408601359560600135945092505050565b60008060006040848603121561173557600080fd5b83359250602084013567ffffffffffffffff81111561175357600080fd5b61175f8682870161154c565b9497909650939450505050565b60208082526015908201527412151310ce881bdc99195c88199d5b199a5b1b1959605a1b604082015260600190565b80820180821115610adb57634e487b7160e01b600052601160045260246000fd5b8183823760009101908152919050565b6000602082840312156117de57600080fd5b5051919050565b600082516117f78184602087016115ff565b9190910192915050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b600181811c9082168061184457607f821691505b60208210810361186457634e487b7160e01b600052602260045260246000fd5b50919050565b60006020828403121561187c57600080fd5b8151801515811461188c57600080fd5b9392505050565b634e487b7160e01b600052602160045260246000fd5b60208152600061188c602083018461162356fea2646970667358221220623dd3ef8f559e5970e1c0ec6ef48bba381fc88a37a6a42dcaa328ef14c0713364736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad6000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000448544c430000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : token_ (address): 0x078D782b760474a361dDA0AF3839290b0EF57AD6
Arg [1] : name (string): HTLC
Arg [2] : version (string): 1

-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 000000000000000000000000078d782b760474a361dda0af3839290b0ef57ad6
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [4] : 48544c4300000000000000000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [6] : 3100000000000000000000000000000000000000000000000000000000000000


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.