Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IResourceMetering {
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
error OutOfGas();
event Initialized(uint8 version);
function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice The address that represents ether when dealing with ERC20 token addresses.
address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @notice The address that represents the system caller responsible for L1 attributes
/// transactions.
address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
maxResourceLimit: 20_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Constants } from "src/libraries/Constants.sol";
/// @title Proxy
/// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
/// if the caller is address(0), meaning that the call originated from an off-chain
/// simulation.
contract Proxy {
/// @notice An event that is emitted each time the implementation is changed. This event is part
/// of the EIP-1967 specification.
/// @param implementation The address of the implementation contract
event Upgraded(address indexed implementation);
/// @notice An event that is emitted each time the owner is upgraded. This event is part of the
/// EIP-1967 specification.
/// @param previousAdmin The previous owner of the contract
/// @param newAdmin The new owner of the contract
event AdminChanged(address previousAdmin, address newAdmin);
/// @notice A modifier that reverts if not called by the owner or by address(0) to allow
/// eth_call to interact with this proxy without needing to use low-level storage
/// inspection. We assume that nobody is able to trigger calls from address(0) during
/// normal EVM execution.
modifier proxyCallIfNotAdmin() {
if (msg.sender == _getAdmin() || msg.sender == address(0)) {
_;
} else {
// This WILL halt the call frame on completion.
_doProxyCall();
}
}
/// @notice Sets the initial admin during contract deployment. Admin address is stored at the
/// EIP-1967 admin storage slot so that accidental storage collision with the
/// implementation is not possible.
/// @param _admin Address of the initial contract admin. Admin has the ability to access the
/// transparent proxy interface.
constructor(address _admin) {
_changeAdmin(_admin);
}
// slither-disable-next-line locked-ether
receive() external payable {
// Proxy call by default.
_doProxyCall();
}
// slither-disable-next-line locked-ether
fallback() external payable {
// Proxy call by default.
_doProxyCall();
}
/// @notice Set the implementation contract address. The code at the given address will execute
/// when this contract is called.
/// @param _implementation Address of the implementation contract.
function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
_setImplementation(_implementation);
}
/// @notice Set the implementation and call a function in a single transaction. Useful to ensure
/// atomic execution of initialization-based upgrades.
/// @param _implementation Address of the implementation contract.
/// @param _data Calldata to delegatecall the new implementation with.
function upgradeToAndCall(
address _implementation,
bytes calldata _data
)
public
payable
virtual
proxyCallIfNotAdmin
returns (bytes memory)
{
_setImplementation(_implementation);
(bool success, bytes memory returndata) = _implementation.delegatecall(_data);
require(success, "Proxy: delegatecall to new implementation contract failed");
return returndata;
}
/// @notice Changes the owner of the proxy contract. Only callable by the owner.
/// @param _admin New owner of the proxy contract.
function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
_changeAdmin(_admin);
}
/// @notice Gets the owner of the proxy contract.
/// @return Owner address.
function admin() public virtual proxyCallIfNotAdmin returns (address) {
return _getAdmin();
}
//// @notice Queries the implementation address.
/// @return Implementation address.
function implementation() public virtual proxyCallIfNotAdmin returns (address) {
return _getImplementation();
}
/// @notice Sets the implementation address.
/// @param _implementation New implementation address.
function _setImplementation(address _implementation) internal {
bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
assembly {
sstore(proxyImplementation, _implementation)
}
emit Upgraded(_implementation);
}
/// @notice Changes the owner of the proxy contract.
/// @param _admin New owner of the proxy contract.
function _changeAdmin(address _admin) internal {
address previous = _getAdmin();
bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
assembly {
sstore(proxyOwner, _admin)
}
emit AdminChanged(previous, _admin);
}
/// @notice Performs the proxy call via a delegatecall.
function _doProxyCall() internal {
address impl = _getImplementation();
require(impl != address(0), "Proxy: implementation not initialized");
assembly {
// Copy calldata into memory at 0x0....calldatasize.
calldatacopy(0x0, 0x0, calldatasize())
// Perform the delegatecall, make sure to pass all available gas.
let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
// Copy returndata into memory at 0x0....returndatasize. Note that this *will*
// overwrite the calldata that we just copied into memory but that doesn't really
// matter because we'll be returning in a second anyway.
returndatacopy(0x0, 0x0, returndatasize())
// Success == 0 means a revert. We'll revert too and pass the data up.
if iszero(success) { revert(0x0, returndatasize()) }
// Otherwise we'll just return and pass the data up.
return(0x0, returndatasize())
}
}
/// @notice Queries the implementation address.
/// @return Implementation address.
function _getImplementation() internal view returns (address) {
address impl;
bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
assembly {
impl := sload(proxyImplementation)
}
return impl;
}
/// @notice Queries the owner of the proxy contract.
/// @return Owner address.
function _getAdmin() internal view returns (address) {
address owner;
bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
assembly {
owner := sload(proxyOwner)
}
return owner;
}
}